Skip to main content
Log in

A curvature-based approach for left ventricular shape analysis from cardiac magnetic resonance imaging

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

It is believed that left ventricular (LV) regional shape is indicative of LV regional function, and cardiac pathologies are often associated with regional alterations in ventricular shape. In this article, we present a set of procedures for evaluating regional LV surface shape from anatomically accurate models reconstructed from cardiac magnetic resonance (MR) images. LV surface curvatures are computed using local surface fitting method, which enables us to assess regional LV shape and its variation. Comparisons are made between normal and diseased hearts. It is illustrated that LV surface curvatures at different regions of the normal heart are higher than those of the diseased heart. Also, the normal heart experiences a larger change in regional curvedness during contraction than the diseased heart. It is believed that with a wide range of dataset being evaluated, this approach will provide a new and efficient way of quantifying LV regional function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Angelie E, de Koning PJ, Danilouchkine MG, van Assen HG, Koning G, van der Geest RJ, Reiber JK (2005) Optimizing the automatic segmentation of the left ventricle in magnetic resonance images. Med Phys 32(2):369–375

    Article  Google Scholar 

  2. Al-Attar SA, Pollex RL, Robinson JF, Miskie BA, Walcarius R, Rutt BK, Hegele RA (2006) Semi-automated segmentation and quantification of adipose tissue in calf and thigh by MRI: a preliminary study in patients with monogenic metabolic syndrome. BMC Med Imaging 6:11

    Article  Google Scholar 

  3. Alliez P, Cohen-Steiner D, Devillers O, Levy B, Desbrun M (2003) Anisotropic polygonal remeshing. ACM Trans Graphics 22(3):485–493

    Article  Google Scholar 

  4. Ayres FJ, Zuffo MK, Rangayyan RM, Boag GS, Odone Filho V, Valente M (2004) Estimation of the tissue composition of the tumor mass in neuroblastoma using segmented CT images. Med Biol Eng Comput 42(3):366–377

    Article  Google Scholar 

  5. Borrelli V, Cazals F, Morvan J-M (2003) On the angular defect of triangulations and the pointwise approximation of curvatures. Comput Aided Geom Design 20(6):319–341

    Article  MATH  MathSciNet  Google Scholar 

  6. Brox T, Weickert J (2006) Level set segmentation with multiple regions. IEEE Trans Image Process 15(10):3213–3218

    Article  Google Scholar 

  7. Cazals F, Pouget M (2003) Estimating differential quantities using polynomial fitting of osculating jets. In: Proceedings of symposium on geometry processing, pp 177–187

  8. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4):539–542

    Article  Google Scholar 

  9. Chuiv NN (1985) Differential geometry for surveying engineers. University of New Brunswick, Frederiction

  10. Corsi C, Vernesi F, Lamberti C, Mor-Avi V (2006) Improved automated quantification of left ventricular size and function from cardiac magnetic resonance images. Comput Cardiol 33:53–56

    Google Scholar 

  11. Cotin S, Delingette H, Ayache N (2000) A hybrid elastic model allowing real-time cutting, deformations and force-feedback for surgery training and simulation. Vis Comput 16(8):437–452

    Article  MATH  Google Scholar 

  12. D’Cruz IA, Aboulatta H, Killam H, Bradley A, Hand RC (1989) Quantitative two-dimensional echocardiographic assessment of left ventricular shape in ischemic heart disease. J Clin Ultrasound 17(8):569–572

    Article  Google Scholar 

  13. Debatin J, Nadel SN, Sostman HD, Spritzer CE, Evans AJ, Grist TM (1992) Magnetic resonance imaging-cardiac ejection fraction measurements Phantom study comparing four different methods. Invest Radiol 27(3):198–204

    Article  Google Scholar 

  14. Devereux RB (1995) Left ventricular geometry, pathophysiology and prognosis. J Am Coll Cardiol 25(4):885–887

    Article  Google Scholar 

  15. Dor V (2001) The endoventricular circular patch plasty (“Dor” procedure) in ischemic akinetic dilated ventricles. Heart Fail Rev 6(3):187–193

    Article  Google Scholar 

  16. Drerup B, Hierholzer E (1985) Objective determination of anatomical landmarks on the body surface: measurement of the vertebra prominens from surface curvature. J Biomech 18(6):467–474

    Article  Google Scholar 

  17. Duann JR, Chiang SH, Lin SB, Lin CC, Chen JH, Su JL (1999) Assessment of left ventricular cardiac shape by the use of volumetric curvature analysis from 3D echocardiography. Comput Med Imag Graph 23(2):89–101

    Article  Google Scholar 

  18. Dyn N, Hormann K, Kim SJ, Levin D (2000) Optimizing 3D triangulations using discrete curvature analysis. In: Lyche T, Shumaker LL (eds) Mathematical methods for curves and surfaces. Vanderbilt University Press, Nashville, pp 135–146

    Google Scholar 

  19. El Berbari R, Bloch I, Redheuil A, Angelini E, Mousseaux E, Frouin F, Herment A (2007) An automated myocardial segmentation in cardiac MRI. In: Proceedings of the 29th annual international conference of the IEEE EMBS, pp 4508–4511

  20. Frobin W, Hierholzer E (1982) Analysis of human back shape using surface curvatures. J Biomech 15(5):379–390

    Article  Google Scholar 

  21. Garimella RV, Swartz BK (2003) Curvature estimation for unstructured triangulations of surfaces. Los Alamos National Laboratory

  22. Gaudio C, Tanzilli G, Mazzarotto P, Motolese M, Romeo F, Marino B, Reale A (1991) Comparison of left ventricular ejection fraction by magnetic resonance imaging and radionuclide ventriculography in idiopathic dilated cardiomyopathy. Am J Cardiol 67(5):411–415

    Article  Google Scholar 

  23. Halmann M, Sideman S, Azhari H, Markiewitz W, Beyar R (1991) Dynamic analysis of left ventricular shape based on curvature function. Basic Res Cardiol 86(4):393–401

    Article  Google Scholar 

  24. Han X, Xu C, Prince JL (2002) A topology preserving geometric deformable model and its application in brain cortical surface reconstruction. In: Osher S, Paragios N (eds) Geometric level set methods in imaging, vision and graphics. Springer, Heidelberg

    Google Scholar 

  25. Harjai KJ, Edupuganti R, Nunez E, Turgut T, Scott L, Pandian NG (2000) Does left ventricular shape influence clinical outcome in heart failure? Clin Cardiol 23(11):813–819

    Article  Google Scholar 

  26. Iannizzotto G, Vita L (2000) Fast and accurate edge-based segmentation with no contour smoothing in 2-D real images. IEEE Trans Image Process 9(7):1232–1237

    Article  Google Scholar 

  27. Koenderink JJ, van Doorn AJ (1992) Surface shape and curvature scales. Image Vis Comput 10(8):557–565

    Article  Google Scholar 

  28. Liu X, Kim W, Drerup B, Mahadev A (2005) Tibial torsion measurement by surface curvature. Clin Biomech 20(4):443–450

    Article  Google Scholar 

  29. Lynch M, Ghita O, Whelam PF (2006) Automatic segmentation of the left ventricle cavity and myocardium in MRI data. Comput Biol Med 36:389–407

    Article  Google Scholar 

  30. Mardia KV, Hainsworth TJ (1998) A spatial thresholding method for image segmentation. IEEE Trans Pattern Anal Mach Intell 10:919–927

    Article  Google Scholar 

  31. Pini R, Giannazzo P, Di Bari M, Innocenti F, Rega L, Casolo G, Devereux R (1997) Transthoracic three-dimensional echocardiography reconstruction of left and right ventricles: in vitro validation and comparison with magnetic resonance imaging. Am Heart J 133(2):221–229

    Article  Google Scholar 

  32. Saber NR, Wood NB, Gosman AD, Merrifield RD, Yang GZ, Charrier CL, Gatehouse PD, Firmin DN (2003) Progress towards patient-specific computational flow modeling of the left heart via combination of magnetic resonance imaging with computational fluid dynamics. Ann Biomed Eng 31(1):42–52

    Article  Google Scholar 

  33. Semelka R, Tomei E, Wagners S, Mayo J, Kondo C, Suzuki J, Caputo G, Higgins C (1990) Normal left ventricular dimensions and function: reproducibility of measurements with cine MR imaging. Radiology 174(3):763–768

    Google Scholar 

  34. Willmore TJ (1985) An introduction to differential geometry. Oxford University Press, Delhi

    Google Scholar 

  35. Wu ST, Batagelo HC (2007) Estimating curvatures and their derivatives on meshes of arbitrary topology from sampling directions. Vis Comput 23(9):803–812

    Article  Google Scholar 

  36. Yeo SY, Tan RS, Chai GB, Ghista DN (2005) Variation of left ventricular surface shape during the cardiac cycle. In: Proceedings of the 3rd IASTED international conference on biomechanics, Benidorm

  37. Yeo SY, Zhong L, Su Y, Tan RS, Ghista DN (2007) Analysis of left ventricular surface deformation during isovolumic contraction. In: Proceedings of the 29th annual international conference of the IEEE Engineering in Medicine and Biology Society, Lyon, pp 787–790

  38. Zhong L, Ghista DN, Ng EY, Lim ST, Chua T, Lee CN (2006) Left ventricular shape-based contractility index. J Biomech 39(13):2397–2409

    Article  Google Scholar 

  39. Zhong L, Yeo SY, Su Y., Le TT, Tan RS, Ghista DN (2007) Regional assessment of left ventricular surface shape from magnetic resonance imaging. In: Proceedings of the 29th annual international conference of the IEEE Engineering in Medicine and Biology Society, Lyon, pp 884–887

  40. Zhong L, Ghista DN, Ng EY, Lim ST, Chua TS, Lee CN (2007) Effect of left ventricular shape alteration on contractility and function. J Med Eng Technol 31(4):253–262

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a research grant from the National Heart Centre, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeo, S.Y., Zhong, L., Su, Y. et al. A curvature-based approach for left ventricular shape analysis from cardiac magnetic resonance imaging. Med Biol Eng Comput 47, 313–322 (2009). https://doi.org/10.1007/s11517-008-0401-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-008-0401-4

Keywords

Navigation