Skip to main content
Log in

The balancing act of AKT in T cells

  • Review
  • Published:
Frontiers in Biology

Abstract

The serine/threonine-specific protein kinase AKT is gaining recognition as a major crossroad in numerous cellular signaling pathways through its ability to regulate cell differentiation, proliferation, survival and metabolism. This review focuses on the recent advances in AKT signaling and downstream events in T cells, emphasizing its contrasting role in conventional and regulatory (Treg) Tcell populations. Activation of AKT has been known for many years to be critical in the development and function of conventional Tcells. However, it has just recently been uncovered that AKTexerts an inhibitory effect on Treg generation and suppressor function. These studies have placed AKTat the nexus of Treg development and function, thus opening novel avenues for therapeutic manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akbar A N, Vukmanovic-Stejic M, Taams L S, Macallan D C (2007). The dynamic co-evolution of memory and regulatory CD4+ Tcells in the periphery. Nat Rev Immunol, 7(3): 231–237

    Article  PubMed  CAS  Google Scholar 

  • Alessi D R, Cohen P (1998). Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev, 8(1): 55–62

    Article  PubMed  CAS  Google Scholar 

  • Alessi D R, Pearce L R, García-Martínez J M (2009). New insights into mTOR signaling: mTORC2 and beyond. Sci Signal, 2(67): pe27

    Article  PubMed  Google Scholar 

  • Altomare D A, Guo K, Cheng J Q, Sonoda G, Walsh K, Testa J R (1995). Cloning, chromosomal localization and expression analysis of the mouse Akt2 oncogene. Oncogene, 11(6): 1055–1060

    PubMed  CAS  Google Scholar 

  • Andjelković M, Jakubowicz T, Cron P, Ming X F, Han J W, Hemmings B A (1996). Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proc Natl Acad Sci USA, 93(12): 5699–5704

    Article  PubMed  Google Scholar 

  • Annacker O, Pimenta-Araujo R, Burlen-Defranoux O, Barbosa T C, Cumano A, Bandeira A (2001). CD25+ CD4+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10. J Immunol, 166(5): 3008–3018

    PubMed  CAS  Google Scholar 

  • Apostolou I, Sarukhan A, Klein L, von Boehmer H (2002). Origin of regulcdory T cells with known specificity for antigen. Nat Immunol, 3(8): 756–763

    PubMed  CAS  Google Scholar 

  • Arimura Y, Shiroki F, Kuwahara S, Kato H, Dianzani U, Uchiyama T, Yagi J (2004). Akt is a neutral amplifier for Th cell differentiation. J Biol Chem, 279(12): 11408–11416

    Article  PubMed  CAS  Google Scholar 

  • Balendran A, Casamayor A, Deak M, Paterson A, Gaffney P, Currie R, Downes C P, Alessi D R (1999). PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2. Curr Biol, 9(8): 393–404

    Article  PubMed  CAS  Google Scholar 

  • Beals C R, Sheridan C M, Turck C W, Gardner P, Crabtree G R (1997). Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science, 275(5308): 1930–1933

    Article  PubMed  CAS  Google Scholar 

  • Bellacosa A, Testa J R, Staal S P, Tsichlis P N (1991). A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science, 254(5029): 274–277

    Article  PubMed  CAS  Google Scholar 

  • Bluestone J A, Abbas A K (2003). Natural versus adaptive regulatory T cells. Nat Rev Immunol, 3(3): 253–257

    Article  PubMed  CAS  Google Scholar 

  • Bopp T, Palmetshofer A, Serfling E, Heib V, Schmitt S, Richter C, Klein M, Schild H, Schmitt E, Stassen M (2005). NFATc2 and NFATc3 transcription factors play a crucial role in suppression of CD4+ T lymphocytes by CD4+ CD25+ regulatory Tcells. J Exp Med, 201(2): 181–187

    Article  PubMed  CAS  Google Scholar 

  • Brodbeck D, Cron P, Hemmings B A (1999). A human protein kinase Bgamma with regulatory phosphorylation sites in the activation loop and in the C-terminal hydrophobic domain. J Biol Chem, 274(14): 9133–9136

    Article  PubMed  CAS  Google Scholar 

  • Brognard J, Sierecki E, Gao T, Newton A C (2007). PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell, 25(6): 917–931

    Article  PubMed  CAS  Google Scholar 

  • Brunet A, Bonni A, Zigmond M J, Lin M Z, Juo P, Hu L S, Anderson M J, Arden K C, Blenis J, Greenberg M E (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 96(6): 857–868

    Article  PubMed  CAS  Google Scholar 

  • Brunkow ME, Jeffery EW, Hjerrild K A, Paeper B, Clark L B, Yasayko S A, Wilkinson J E, Galas D, Ziegler S F, Ramsdell F (2001). Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet, 27(1): 68–73

    Article  PubMed  CAS  Google Scholar 

  • Burgering B M, Coffer P J (1995). Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature, 376(6541): 599–602

    Article  PubMed  CAS  Google Scholar 

  • Burgering B M, Kops G J (2002). Cell cycle and death control: long live Forkheads. Trends Biochem Sci, 27(7): 352–360

    Article  PubMed  CAS  Google Scholar 

  • Cantley L C, Neel B G (1999). New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA, 96(8): 4240–4245

    Article  PubMed  CAS  Google Scholar 

  • Cardone M H, Roy N, Stennicke H R, Salvesen G S, Franke T F, Stanbridge E, Frisch S, Reed J C (1998). Regulation of cell death protease caspase-9 by phosphorylation. Science, 282(5392): 1318–1321

    Article  PubMed  CAS  Google Scholar 

  • Carpenter C L, Cantley L C (1996). Phosphoinositide kinases. Curr Opin Cell Biol, 8(2): 153–158

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Edelstein L C, Gélinas C (2000). The Rel/NF-kappaB family directly activates expression of the apoptosis inhibitor Bcl-x(L). Mol Cell Biol, 20(8): 2687–2695

    Article  PubMed  Google Scholar 

  • Cheng J Q, Godwin A K, Bellacosa A, Taguchi T, Franke T F, Hamilton T C, Tsichlis P N, Testa J R (1992). AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci USA, 89(19): 9267–9271

    Article  PubMed  CAS  Google Scholar 

  • Coffer P J, Woodgett J R (1991). Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMPdependent and protein kinase C families. Eur J Biochem, 201(2): 475–481

    Article  PubMed  CAS  Google Scholar 

  • Conery A R, Cao Y, Thompson E A, Townsend C M Jr, Ko T C, Luo K (2004). Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis. Nat Cell Biol, 6(4): 366–372

    Article  PubMed  CAS  Google Scholar 

  • Coombes J L, Siddiqui K R, Arancibia-Cárcamo C V, Hall J, Sun C M, Belkaid Y, Powrie F (2007). A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med, 204(8): 1757–1764

    Article  PubMed  CAS  Google Scholar 

  • Crellin N K, Garcia R V, Levings M K (2007). Altered activation of AKT is required for the suppressive function of human CD4+CD25+ T regulatory cells. Blood, 109(5): 2014–2022

    Article  PubMed  CAS  Google Scholar 

  • Datta S R, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg M E (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell, 91(2): 231–241

    Article  PubMed  CAS  Google Scholar 

  • del Peso L, González-García M, Page C, Herrera R, Nuñez G (1997). Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science, 278(5338): 687–689

    Article  PubMed  Google Scholar 

  • Du K, Montminy M (1998). CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem, 273(49): 32377–32379

    Article  PubMed  CAS  Google Scholar 

  • Duarte J H, Zelenay S, Bergman ML, Martins A C, Demengeot J (2009). Natural Treg cells spontaneously differentiate into pathogenic helper cells in lymphopenic conditions. Eur J Immunol, 39(4): 948–955

    Article  PubMed  CAS  Google Scholar 

  • Dummler B, Hemmings B A (2007). Physiological roles of PKB/Akt isoforms in development and disease. Biochem Soc Trans, 35(2): 231–235

    Article  PubMed  CAS  Google Scholar 

  • Feuerer M, Hill J A, Mathis D, Benoist C (2009). Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat Immunol, 10(7): 689–695

    Article  PubMed  CAS  Google Scholar 

  • Fontenot J D, Gavin M A, Rudensky A Y (2003). Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol, 4(4): 330–336

    Article  PubMed  CAS  Google Scholar 

  • Franke T F, Yang S I, Chan T O, Datta K, Kazlauskas A, Morrison D K, Kaplan D R, Tsichlis P N (1995). The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell, 81(5): 727–736

    Article  PubMed  CAS  Google Scholar 

  • Gao T, Furnari F, Newton A C (2005). PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell, 18(1): 13–24

    Article  PubMed  CAS  Google Scholar 

  • Godfrey D I, Kennedy J, Suda T, Zlotnik A (1993). A developmental pathway involving four phenotypically and functionally distinct subsets of CD3-CD4-CD8-triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J Immunol, 150(10): 4244–4252

    PubMed  CAS  Google Scholar 

  • Gregori S, Giarratana N, Smiroldo S, Adorini L (2003). Dynamics of pathogenic and suppressor T cells in autoimmune diabetes development. J Immunol, 171(8): 4040–4047

    PubMed  CAS  Google Scholar 

  • Hagenbeek T J, Naspetti M, Malergue F, Garçon F, Nunès J A, Cleutjens K B, Trapman J, Krimpenfort P, Spits H (2004). The loss of PTEN allows TCR alphabeta lineage thymocytes to bypass IL-7 and Pre-TCR-mediated signaling. J Exp Med, 200(7): 883–894

    Article  PubMed  CAS  Google Scholar 

  • Hanada M, Feng J, Hemmings B A (2004). Structure, regulation and function of PKB/AKT—a major therapeutic target. Biochim Biophys Acta, 1697(1–2): 3–16

    PubMed  CAS  Google Scholar 

  • Harrington L S, Findlay G M, Lamb R F (2005). Restraining PI3K: mTOR signalling goes back to the membrane. Trends Biochem Sci, 30(1): 35–42

    Article  PubMed  CAS  Google Scholar 

  • Haxhinasto S, Mathis D, Benoist C (2008). The AKT-mTOR axis regulates de novo differentiation of CD4+ Foxp3+ cells. J Exp Med, 205(3): 565–574

    Article  PubMed  CAS  Google Scholar 

  • Hill MM, Andjelkovic M, Brazil D P, Ferrari S, Fabbro D, Hemmings B A (2001). Insulin-stimulated protein kinase B phosphorylation on Ser-473 is independent of its activity and occurs through a staurosporine-insensitive kinase. J Biol Chem, 276(28): 25643–25646

    Article  PubMed  CAS  Google Scholar 

  • Hinton H J, Alessi D R, Cantrell D A (2004). The serine kinase phosphoinositide-dependent kinase 1 (PDK1) regulates T cell development. Nat Immunol, 5(5): 539–545

    Article  PubMed  CAS  Google Scholar 

  • Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K, Ueno Y, Hatch H, Majumder P K, Pan B S, Kotani H (2010). MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther, 9(7): 1956–1967

    Article  PubMed  CAS  Google Scholar 

  • Hoffman K, Holmes F A, Fraschini G, Esparza L, Frye D, Raber M N, Newman R A, Hortobagyi G N (1996). Phase I–II study: triciribine (tricyclic nucleoside phosphate) for metastatic breast cancer. Cancer Chemother Pharmacol, 37(3): 254–258

    Article  PubMed  CAS  Google Scholar 

  • Hori S (2010). Developmental plasticity of Foxp3+ regulatory T cells. Curr Opin Immunol, 22(5): 575–582

    Article  PubMed  CAS  Google Scholar 

  • Hori S, Nomura T, Sakaguchi S (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science, 299(5609): 1057–1061

    Article  PubMed  CAS  Google Scholar 

  • Horwitz D A, Zheng S G, Gray J D (2008). Natural and TGF-betainduced Foxp3(+)CD4(+) CD25(+) regulatory Tcells are not mirror images of each other. Trends Immunol, 29(9): 429–435

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Manning B D (2009). A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem Soc Trans, 37(1): 217–222

    Article  PubMed  CAS  Google Scholar 

  • Jefferies H B, Fumagalli S, Dennis P B, Reinhard C, Pearson R B, Thomas G (1997). Rapamycin suppresses 5′TOP mRNA translation through inhibition of p70s6k. EMBO J, 16(12): 3693–3704

    Article  PubMed  CAS  Google Scholar 

  • Jones P F, Jakubowicz T, Pitossi F J, Maurer F, Hemmings B A (1991). Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc Natl Acad Sci USA, 88(10): 4171–4175

    Article  PubMed  CAS  Google Scholar 

  • Josefowicz S Z, Rudensky A (2009). Control of regulatory T cell lineage commitment and maintenance. Immunity, 30(5): 616–625

    Article  PubMed  CAS  Google Scholar 

  • Juntilla M M, Koretzky G A (2008). Critical roles of the PI3K/Akt signaling pathway in Tcell development. Immunol Lett, 116(2): 104–110

    Article  PubMed  CAS  Google Scholar 

  • Juntilla M M, Wofford J A, Birnbaum M J, Rathmell J C, Koretzky G A (2007). Akt1 and Akt2 are required for alphabeta thymocyte survival and differentiation. Proc Natl Acad Sci USA, 104(29): 12105–12110

    Article  PubMed  CAS  Google Scholar 

  • Kandel E S, Hay N (1999). The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res, 253(1): 210–229

    Article  PubMed  CAS  Google Scholar 

  • Kane L P, Andres P G, Howland K C, Abbas A K, Weiss A (2001). Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-gamma but not TH2 cytokines. Nat Immunol, 2(1): 37–44

    Article  PubMed  CAS  Google Scholar 

  • Kane L P, Shapiro V S, Stokoe D, Weiss A (1999). Induction of NFkappaB by the Akt/PKB kinase. Curr Biol, 9(11): 601–604

    Article  PubMed  CAS  Google Scholar 

  • Kawase T, Ohki R, Shibata T, Tsutsumi S, Kamimura N, Inazawa J, Ohta T, Ichikawa H, Aburatani H, Tashiro F, Taya Y (2009). PH domainonly protein PHLDA3 is a p53-regulated repressor of Akt. Cell, 136(3): 535–550

    Article  PubMed  CAS  Google Scholar 

  • Khattri R, Cox T, Yasayko S A, Ramsdell F (2003). An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol, 4(4): 337–342

    Article  PubMed  CAS  Google Scholar 

  • Khoshnan A, Tindell C, Laux I, Bae D, Bennett B, Nel A E (2000). The NF-kappa B cascade is important in Bcl-xL expression and for the anti-apoptotic effects of the CD28 receptor in primary human CD4+ lymphocytes. J Immunol, 165(4): 1743–1754

    PubMed  CAS  Google Scholar 

  • King C G, Kobayashi T, Cejas P J, Kim T, Yoon K, Kim G K, Chiffoleau E, Hickman S P, Walsh P T, Turka L A, Choi Y (2006). TRAF6 is a T cell-intrinsic negative regulator required for the maintenance of immune homeostasis. Nat Med, 12(9): 1088–1092

    Article  PubMed  CAS  Google Scholar 

  • Kleijn M, Scheper G C, Voorma H O, Thomas A A (1998). Regulation of translation initiation factors by signal transduction. Eur J Biochem, 253(3): 531–544

    Article  PubMed  CAS  Google Scholar 

  • Kojima H, Kanno Y, Hase H, Kobata T (2005). CD4+CD25+ regulatory T cells attenuate the phosphatidylinositol 3-kinase/Akt pathway in antigen-primed immature CD8+ CTLs during functional maturation. J Immunol, 174(10): 5959–5967

    PubMed  CAS  Google Scholar 

  • Komatsu N, Mariotti-Ferrandiz M E, Wang Y, Malissen B, Waldmann H, Hori S (2009). Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc Natl Acad Sci USA, 106(6): 1903–1908

    Article  PubMed  CAS  Google Scholar 

  • Konishi H, Kuroda S, Tanaka M, Matsuzaki H, Ono Y, Kameyama K, Haga T, Kikkawa U (1995). Molecular cloning and characterization of a new member of the RAC protein kinase family: association of the pleckstrin homology domain of three types of RAC protein kinase with protein kinase C subspecies and beta gamma subunits of G proteins. Biochem Biophys Res Commun, 216(2): 526–534

    Article  PubMed  CAS  Google Scholar 

  • Lafont V, Astoul E, Laurence A, Liautard J, Cantrell D (2000). The T cell antigen receptor activates phosphatidylinositol 3-kinase-regulated serine kinases protein kinase B and ribosomal S6 kinase 1. FEBS Lett, 486(1): 38–42

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Gudapati P, Dragovic S, Spencer C, Joyce S, Killeen N, Magnuson MA, Boothby M (2010). Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity, 32(6): 743–753

    Article  PubMed  CAS  Google Scholar 

  • Levelt C N, Carsetti R, Eichmann K (1993a). Regulation of thymocyte development through CD3. II. Expression of Tcell receptor beta CD3 epsilon and maturation to the CD4+8+ stage are highly correlated in individual thymocytes. J Exp Med, 178(6): 1867–1875

    Article  PubMed  CAS  Google Scholar 

  • Levelt C N, Ehrfeld A, Eichmann K (1993b). Regulation of thymocyte development through CD3. I. Timepoint of ligation of CD3 epsilon determines clonal deletion or induction of developmental program. J Exp Med, 177(3): 707–716

    Article  PubMed  CAS  Google Scholar 

  • Liao Y, Hung M C (2004). A new role of protein phosphatase 2a in adenoviral E1A protein-mediated sensitization to anticancer druginduced apoptosis in human breast cancer cells. Cancer Res, 64(17): 5938–5942

    Article  PubMed  CAS  Google Scholar 

  • Livolsi A, Busuttil V, Imbert V, Abraham R T, Peyron J F (2001). Tyrosine phosphorylation-dependent activation of NF-kappa B. Requirement for p56 LCK and ZAP-70 protein tyrosine kinases. Eur J Biochem, 268(5): 1508–1515

    Article  PubMed  CAS  Google Scholar 

  • Madrid LV, Wang C Y, Guttridge D C, Schottelius A J, Baldwin A S Jr, Mayo M W (2000). Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-kappaB. Mol Cell Biol, 20(5): 1626–1638

    Article  PubMed  CAS  Google Scholar 

  • Maira S M, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C, Brachmann S, Chène P, De Pover A, Schoemaker K, Fabbro D, Gabriel D, Simonen M, Murphy L, Finan P, Sellers W, García-Echeverría C (2008). Identification and characterization of NVPBEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther, 7(7): 1851–1863

    Article  PubMed  CAS  Google Scholar 

  • Manning B D, Cantley L C (2007). AKT/PKB signaling: navigating downstream. Cell, 129(7): 1261–1274

    Article  PubMed  CAS  Google Scholar 

  • Mao C, Tili E G, Dose M, Haks M C, Bear S E, Maroulakou I, Horie K, Gaitanaris G A, Fidanza V, Ludwig T, Wiest D L, Gounari F, Tsichlis P N (2007). Unequal contribution of Akt isoforms in the doublenegative to double-positive thymocyte transition. J Immunol, 178(9): 5443–5453

    PubMed  CAS  Google Scholar 

  • Markman B, Dienstmann R, Tabernero J (2010). Targeting the PI3K/Akt/mTOR pathway—beyond rapalogs. Oncotarget, 1(7): 530–543

    PubMed  Google Scholar 

  • Marone R, Cmiljanovic V, Giese B, Wymann M P (2008). Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim Biophys Acta, 1784(1): 159–185

    Article  PubMed  CAS  Google Scholar 

  • Mendoza MC, Blenis J (2007). PHLPPing it off: phosphatases get in the Akt. Mol Cell, 25(6): 798–800

    Article  PubMed  CAS  Google Scholar 

  • Monk C R, Spachidou M, Rovis F, Leung E, Botto M, Lechler R I, Garden O A (2005). MRL/Mp CD4+,CD25 T cells show reduced sensitivity to suppression by CD4+,CD25+ regulatory T cells in vitro: a novel defect of T cell regulation in systemic lupus erythematosus. Arthritis Rheum, 52(4): 1180–1184

    Article  PubMed  CAS  Google Scholar 

  • Nakatani K, Sakaue H, Thompson D A, Weigel R J, Roth R A (1999). Identification of a human Akt3 (protein kinase B gamma) which contains the regulatory serine phosphorylation site. Biochem Biophys Res Commun, 257(3): 906–910

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly K E, Rojo F, She Q B, Solit D, Mills G B, Smith D, Lane H, Hofmann F, Hicklin D J, Ludwig D L, Baselga J, Rosen N (2006). mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res, 66(3): 1500–1508

    Article  PubMed  CAS  Google Scholar 

  • Obata T, Yaffe M B, Leparc G G, Piro E T, Maegawa H, Kashiwagi A, Kikkawa R, Cantley L C (2000). Peptide and protein library screening defines optimal substrate motifs for AKT/PKB. J Biol Chem, 275(46): 36108–36115

    Article  PubMed  CAS  Google Scholar 

  • Oldenhove G, Bouladoux N, Wohlfert E A, Hall J A, Chou D, Dos Santos L, O’Brien S, Blank R, Lamb E, Natarajan S, Kastenmayer R, Hunter C, Grigg M E, Belkaid Y (2009). Decrease of Foxp3 + Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity, 31(5): 772–786

    Article  PubMed  CAS  Google Scholar 

  • Ozes O N, Mayo L D, Gustin J A, Pfeffer S R, Pfeffer L M, Donner D B (1999). NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature, 401(6748): 82–85

    Article  PubMed  CAS  Google Scholar 

  • Padmanabhan S, Mukhopadhyay A, Narasimhan S D, Tesz G, Czech M P, Tissenbaum H A (2009). A PP2A regulatory subunit regulates C. elegans insulin/IGF-1 signaling by modulating AKT-1 phosphorylation. Cell, 136(5): 939–951

    Article  PubMed  CAS  Google Scholar 

  • Pal S K, Reckamp K, Yu H, Figlin R A (2010). Akt inhibitors in clinical development for the treatment of cancer. Expert Opin Investig Drugs, 19(11): 1355–1366

    Article  PubMed  CAS  Google Scholar 

  • Papiernik M, de Moraes M L, Pontoux C, Vasseur F, Pénit C (1998). Regulatory CD4 T cells: expression of IL-2R alpha chain, resistance to clonal deletion and IL-2 dependency. Int Immunol, 10(4): 371–378

    Article  PubMed  CAS  Google Scholar 

  • Parry R V, Reif K, Smith G, Sansom D M, Hemmings B A, Ward S G (1997). Ligation of the T cell co-stimulatory receptor CD28 activates the serine-threonine protein kinase protein kinase B. Eur J Immunol, 27(10): 2495–2501

    Article  PubMed  CAS  Google Scholar 

  • Patra A K, Drewes T, Engelmann S, Chuvpilo S, Kishi H, Hünig T, Serfling E, Bommhardt U H (2006). PKB rescues calcineurin/NFAT-induced arrest of Rag expression and pre-T cell differentiation. J Immunol, 177(7): 4567–4576

    PubMed  CAS  Google Scholar 

  • Patterson S J, Han J M, Garcia R, Assi K, Gao T, O’Neill A, Newton A C, Levings M K (2011). Cutting edge: PHLPP regulates the development, function, and molecular signaling pathways of regulatory T cells. J Immunol, 186(10): 5533–5537

    Article  PubMed  CAS  Google Scholar 

  • Peifer C, Alessi D R (2008). Small-molecule inhibitors of PDK1. ChemMedChem, 3(12): 1810–1838

    Article  PubMed  CAS  Google Scholar 

  • Penit C, Vasseur F (1989). Cell proliferation and differentiation in the fetal and early postnatal mouse thymus. J Immunol, 142(10): 3369–3377

    PubMed  CAS  Google Scholar 

  • Pillai V, Karandikar N J (2007). Human regulatory T cells: a unique, stable thymic subset or a reversible peripheral state of differentiation? Immunol Lett, 114(1): 9–15

    Article  PubMed  CAS  Google Scholar 

  • Pim D, Massimi P, Dilworth S M, Banks L (2005). Activation of the protein kinase B pathway by the HPV-16 E7 oncoprotein occurs through a mechanism involving interaction with PP2A. Oncogene, 24(53): 7830–7838

    Article  PubMed  CAS  Google Scholar 

  • Rao A, Luo C, Hogan P G (1997). Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol, 15(1): 707–747

    Article  PubMed  CAS  Google Scholar 

  • Redpath N T, Foulstone E J, Proud C G (1996). Regulation of translation elongation factor-2 by insulin via a rapamycin-sensitive signalling pathway. EMBO J, 15(9): 2291–2297

    PubMed  CAS  Google Scholar 

  • Reid J M, Walden C A, Qin R, Ziegler K L, Haslam J L, Rajewski R A, Warndahl R, Fitting C L, Boring D, Szabo E, Crowell J, Perloff M, Jong L, Bauer B A, Mandrekar S J, Ames M M, Limburg P J, and the Cancer Prevention Network (2011). Phase 0 clinical chemoprevention trial of the Akt inhibitor SR13668. Cancer Prev Res (Phila), 4(3): 347–353

    Article  CAS  Google Scholar 

  • Reif K, Burgering B M, Cantrell D A (1997). Phosphatidylinositol 3-kinase links the interleukin-2 receptor to protein kinase B and p70 S6 kinase. J Biol Chem, 272(22): 14426–14433

    Article  PubMed  CAS  Google Scholar 

  • Remy I, Montmarquette A, Michnick S W (2004). PKB/Akt modulates TGF-beta signalling through a direct interaction with Smad3. Nat Cell Biol, 6(4): 358–365

    Article  PubMed  CAS  Google Scholar 

  • Reneer M C, Estes D J, Velez-Ortega A C, Norris A, Mayer M, Marti F (2011). Peripherally induced human regulatory T cells uncouple Kv1.3 activation from TCR-associated signaling. Eur J Immunol, 41(11):3170–3175

    Article  PubMed  CAS  Google Scholar 

  • Rengarajan J, Tang B, Glimcher L H (2002). NFATc2 and NFATc3 regulate T(H)2 differentiation and modulate TCR-responsiveness of naïve T(H)cells. Nat Immunol, 3(1): 48–54

    Article  PubMed  CAS  Google Scholar 

  • Rocher G, Letourneux C, Lenormand P, Porteu F (2007). Inhibition of B56-containing protein phosphatase 2As by the early response gene IEX-1 leads to control of Akt activity. J Biol Chem, 282(8): 5468–5477

    Article  PubMed  CAS  Google Scholar 

  • Roget K, Malissen M, Malbec O, Malissen B, Daëron M (2008). Non-T cell activation linker promotes mast cell survival by dampening the recruitment of SHIP1 by linker for activation of T cells. J Immunol, 180(6): 3689–3698

    PubMed  CAS  Google Scholar 

  • Romashkova J A, Makarov S S (1999). NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature, 401(6748): 86–90

    Article  PubMed  CAS  Google Scholar 

  • Rondinone C M, Carvalho E, Wesslau C, Smith U P (1999). Impaired glucose transport and protein kinase B activation by insulin, but not okadaic acid, in adipocytes from subjects with Type II diabetes mellitus. Diabetologia, 42(7): 819–825

    Article  PubMed  CAS  Google Scholar 

  • Rong S B, Hu Y, Enyedy I, Powis G, Meuillet E J, Wu X, Wang R, Wang S, Kozikowski A P (2001). Molecular modeling studies of the Akt PH domain and its interaction with phosphoinositides. J Med Chem, 44(6): 898–908

    Article  PubMed  CAS  Google Scholar 

  • Salomon B, Bluestone J A (2001). Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol, 19(1): 225–252

    Article  PubMed  CAS  Google Scholar 

  • Sarbassov D D, Guertin D A, Ali S M, Sabatini D M (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 307(5712): 1098–1101

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Irie-Sasaki J, Jones R G, Oliveira-dos-Santos A J, Stanford W L, Bolon B, Wakeham A, Itie A, Bouchard D, Kozieradzki I, Joza N, Mak T W, Ohashi P S, Suzuki A, Penninger J M (2000). Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science, 287(5455): 1040–1046

    Article  PubMed  CAS  Google Scholar 

  • Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, Knight Z A, Cobb B S, Cantrell D, O’Connor E, Shokat K M, Fisher A G, Merkenschlager M (2008). T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci USA, 105(22): 7797–7802

    Article  PubMed  CAS  Google Scholar 

  • Shevach E M (2001). Certified professionals: CD4(+)CD25(+) suppressor T cells. J Exp Med, 193(11): F41–F46

    Article  PubMed  CAS  Google Scholar 

  • Shevach E M (2009). Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity, 30(5): 636–645

    Article  PubMed  CAS  Google Scholar 

  • Shimoke K, Chiba H (2001). Nerve growth factor prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced cell death via the Akt pathway by suppressing caspase-3-like activity using PC12 cells: relevance to therapeutical application for Parkinson’s disease. J Neurosci Res, 63(5): 402–409

    Article  PubMed  CAS  Google Scholar 

  • Sizemore N, Lerner N, Dombrowski N, Sakurai H, Stark G R (2002). Distinct roles of the Ikappa B kinase alpha and beta subunits in liberating nuclear factor kappa B (NF-kappa B) from Ikappa B and in phosphorylating the p65 subunit of NF-kappa B. J Biol Chem, 277(6): 3863–3869

    Article  PubMed  CAS  Google Scholar 

  • Song G, Ouyang G, Bao S (2005). The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med, 9(1): 59–71

    Article  PubMed  CAS  Google Scholar 

  • Song K, Wang H, Krebs T L, Danielpour D (2006). Novel roles of Akt and mTOR in suppressing TGF-beta/ALK5-mediated Smad3 activation. EMBO J, 25(1): 58–69

    Article  PubMed  CAS  Google Scholar 

  • Staal S P (1987). Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci USA, 84(14): 5034–5037

    Article  PubMed  CAS  Google Scholar 

  • Staal S P, Hartley J W, Rowe W P (1977). Isolation of transforming murine leukemia viruses from mice with a high incidence of spontaneous lymphoma. Proc Natl Acad Sci USA, 74(7): 3065–3067

    Article  PubMed  CAS  Google Scholar 

  • Stahl M, Dijkers P F, Kops G J, Lens S M, Coffer P J, Burgering B M, Medema R H (2002). The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. J Immunol, 168(10): 5024–5031

    PubMed  CAS  Google Scholar 

  • Stambolic V, Suzuki A, de la Pompa J L, Brothers G M, Mirtsos C, Sasaki T, Ruland J, Penninger JM, Siderovski D P, Mak T W (1998). Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell, 95(1): 29–39

    Article  PubMed  CAS  Google Scholar 

  • Starr T K, Jameson S C, Hogquist K A (2003). Positive and negative selection of T cells. Annu Rev Immunol, 21(1): 139–176

    Article  PubMed  CAS  Google Scholar 

  • Suizu F, Hiramuki Y, Okumura F, Matsuda M, Okumura A J, Hirata N, Narita M, Kohno T, Yokota J, Bohgaki M, Obuse C, Hatakeyama S, Obata T, Noguchi M (2009). The E3 ligase TTC3 facilitates ubiquitination and degradation of phosphorylated Akt. Dev Cell, 17(6): 800–810

    Article  PubMed  CAS  Google Scholar 

  • Tang Q, Bluestone J A (2008). The Foxp3+ regulatory Tcell: a jack of all trades, master of regulation. Nat Immunol, 9(3): 239–244

    Article  PubMed  CAS  Google Scholar 

  • Thomas C C, Deak M, Alessi D R, van Aalten D M (2002). Highresolution structure of the pleckstrin homology domain of protein kinase b/akt bound to phosphatidylinositol (3,4,5)-trisphosphate. Curr Biol, 12(14): 1256–1262

    Article  PubMed  CAS  Google Scholar 

  • Turinsky J, Damrau-Abney A (1998). Akt1 kinase and dynamics of insulin resistance in denervated muscles in vivo. Am J Physiol, 275(5 Pt 2): R1425–R1430

    PubMed  CAS  Google Scholar 

  • Vignali D A, Collison LW, Workman C J (2008). How regulatory T cells work. Nat Rev Immunol, 8(7): 523–532

    Article  PubMed  CAS  Google Scholar 

  • Vlahos C J, Matter W F, Hui K Y, Brown R F (1994). A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem, 269(7): 5241–5248

    PubMed  CAS  Google Scholar 

  • Vukmanovic-Stejic M, Zhang Y, Cook J E, Fletcher J M, McQuaid A, Masters J E, Rustin M H, Taams L S, Beverley P C, Macallan D C, Akbar A N (2006). Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J Clin Invest, 116(9): 2423–2433

    Article  PubMed  CAS  Google Scholar 

  • Wan Q, Kozhaya L, ElHed A, Ramesh R, Carlson T J, Djuretic I M, Sundrud M S, Unutmaz D (2011). Cytokine signals through PI-3 kinase pathway modulate Th17 cytokine production by CCR6 + human memory T cells. J Exp Med, 208(9): 1875–1887

    Article  PubMed  CAS  Google Scholar 

  • Wehrens E J, Mijnheer G, Duurland C L, Klein M, Meerding J, van Loosdregt J, de Jager W, Sawitzki B, Coffer PJ, Vastert B, Prakken B J, van Wijk F (2011). Functional human regulatory T cells fail to control autoimmune inflammation due to PKB/c-akt hyperactivation in effector cells. Blood, 118(13):3538–3548

    Article  PubMed  CAS  Google Scholar 

  • Werlen G, Hausmann B, Naeher D, Palmer E (2003). Signaling life and death in the thymus: timing is everything. Science, 299(5614): 1859–1863

    Article  PubMed  CAS  Google Scholar 

  • Wiesinger D, Gubler H U, Haefliger W, Hauser D (1974). Antiin-flammatory activity of the new mould metabolite 11-desacetoxywortmannin and of some of its derivatives. Experientia, 30(2): 135–136

    Article  PubMed  CAS  Google Scholar 

  • Workman C J, Szymczak-Workman A L, Collison L W, Pillai M R, Vignali D A (2009). The development and function of regulatory T cells. Cell Mol Life Sci, 66(16): 2603–2622

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Kitani A, Fuss I, Strober W (2007). Cutting edge: regulatory T cells induce CD4+CD25Foxp3 T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol, 178(11): 6725–6729

    PubMed  CAS  Google Scholar 

  • Yang X O, Nurieva R, Martinez G J, Kang H S, Chung Y, Pappu B P, Shah B, Chang S H, Schluns K S, Watowich S S, Feng X H, Jetten A M, Dong C (2008). Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity, 29(1): 44–56

    Article  PubMed  CAS  Google Scholar 

  • Yang Z Z, Tschopp O, Baudry A, Dümmler B, Hynx D, Hemmings B A (2004). Physiological functions of protein kinase B/Akt. Biochem Soc Trans, 32(2): 350–354

    Article  PubMed  CAS  Google Scholar 

  • You S, Belghith M, Cobbold S, Alyanakian M A, Gouarin C, Barriot S, Garcia C, Waldmann H, Bach J F, Chatenoud L (2005). Autoimmune diabetes onset results from qualitative rather than quantitative agedependent changes in pathogenic T-cells. Diabetes, 54(5): 1415–1422

    Article  PubMed  CAS  Google Scholar 

  • Yung HW, Charnock-Jones D S, Burton G J (2011). Regulation of AKT phosphorylation at Ser473 and Thr308 by endoplasmic reticulum stress modulates substrate specificity in a severity dependent manner. PLoS ONE, 6(3): e17894

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Lopes J E, Chong MM, Ivanov I I, Min R, Victora G D, Shen Y, Du J, Rubtsov Y P, Rudensky AY, Ziegler S F, Littman D R (2008). TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature, 453(7192): 236–240

    Article  PubMed  CAS  Google Scholar 

  • Ziegler S F (2006). FOXP3: of mice and men. Annu Rev Immunol, 24(1): 209–226

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesc Marti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reneer, M.C., Marti, F. The balancing act of AKT in T cells. Front. Biol. 8, 160–174 (2013). https://doi.org/10.1007/s11515-012-1202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-012-1202-6

Keywords

Navigation