Skip to main content
Log in

Anti-Inflammatory Efficacy of Dexamethasone and Nrf2 Activators in the CNS Using Brain Slices as a Model of Acute Injury

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Limiting excessive production of inflammatory mediators is an effective therapeutic strategy for many diseases. It’s also a promising remedy for neurodegenerative diseases and central nervous system (CNS) injuries. Glucocorticoids are valuable anti-inflammatory agents, but their use is constrained by adverse side-effects. Activators of NF-E2-related factor-2 (Nrf2) signaling represent an attractive anti-inflammatory alternative. In this study, dexamethasone, a synthetic glucocorticoid, and several molecular activators of Nrf2 were evaluated for efficacy in slices of cerebral cortex derived from adult SJL/J mice. Cortical explants increased expression of IL-1β and TNF-α mRNAs in culture within 5 h of sectioning. This expression was inhibited with dexamethasone in the explant medium or injected systemically in mice before sectioning. Semi-synthetic triterpenoid (SST) derivatives, potent activators of the Nrf2 pathway, demonstrated fast-acting anti-inflammatory activity in microglia cultures, but not in the cortical slice system. Quercetin, luteolin, and dimethyl fumarate were also evaluated as molecular activators of Nrf2. While expression of inflammatory mediators in microglia cultures was inhibited, these compounds did not demonstrate anti-inflammatory efficacy in cortical slices. In conclusion, brain slices were amenable to pharmacological modification as demonstrated by anti-inflammatory activity with dexamethasone. The utilization of Nrf2 activators to limit inflammatory mediators within the CNS requires further investigation. Inactivity in CNS tissue, however, suggests their safe use without neurological side-effects in treating non-CNS disorders. Short-term CNS explants may provide a more accurate model of in vivo conditions than microglia cultures since the complex tissue microenvironment is maintained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Babcock AA, Toft-Hansen H, Owens T (2008) Signaling through MyD88 regulates leukocyte recruitment after brain injury. J Immunol 181:6481–6490

    PubMed  CAS  Google Scholar 

  • Bartholdi D, Schwab ME (1997) Expression of pro–inflammatory cytokine and chemokine mRNA upon experimental spinal cord injury in mouse: an in situ hybridization study. Eur J Neurosci 9:1422–1438

    Article  PubMed  CAS  Google Scholar 

  • Bertorelli R, Adami M, Di Santo E, Ghezzi P (1998) MK 801 and dexamethasone reduce both tumor necrosis factor levels and infarct volume after focal cerebral ischemia in the rat brain. Neurosci Lett 246:41–44

    Article  PubMed  CAS  Google Scholar 

  • Calkins MJ, Johnson DA, Townsend JA, Vargas MR, Dowell JA, Williamson TP, Kraft AD, Lee JM, Li J, Johnson JA (2009) The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease. Antioxid Redox Sign 11:497–508

    Article  CAS  Google Scholar 

  • Castano A, Herrera AJ, Cano J, Machado A (2002) The degenerative effect of a single intranigral injection of LPS on the dopaminergic system is prevented by dexamethasone, and not mimicked by rh-TNF-alpha, IL-1beta and IFN-gamma. J Neurochem 81:150–157

    Article  PubMed  CAS  Google Scholar 

  • Chang RCC, Chiu K, Ho YS, So KF (2009) Modulation of neuroimmune responses on glia in the central nervous system: implication in therapeutic intervention against neuroinflammation. Cell Mol Immunol 5:317–326

    Article  Google Scholar 

  • Chen JC, Ho FM (2005) Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of I [kappa] B kinase, nuclear factor-kappa B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia. Eur J Pharmacol 521:9–20

    Article  PubMed  CAS  Google Scholar 

  • Chen XL, Kunsch C (2004) Induction of cytoprotective genes through Nrf2/antioxidant response element pathway: a new therapeutic approach for the treatment of inflammatory diseases. Curr Pharm Des 10:879–891

    Article  PubMed  CAS  Google Scholar 

  • Cho S, Wood A, Bowlby MR (2007) Brain slices as models for neurodegenerative disease and screening platforms to identify novel therapeutics. Curr Neuropharmacol 5:19–33

    Article  PubMed  CAS  Google Scholar 

  • Dallas S, Zhu X, Baruchel S, Schlichter L, Bendayan R (2003) Functional expression of the multidrug resistance protein 1 in microglia. J Pharmacol Exp Ther 307:282–290

    Article  PubMed  CAS  Google Scholar 

  • Dallas S, Schlichter L, Bendayan R (2004) Multidrug resistance protein (MRP) 4-and MRP 5-mediated efflux of 9-(2-phosphonylmethoxyethyl) adenine by microglia. J Pharmacol Exp Ther 309:1221–1221

    Article  PubMed  CAS  Google Scholar 

  • Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y, Yamamoto M, Talalay P (2002) Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci U S A 99:11908–11913

    Article  PubMed  CAS  Google Scholar 

  • Dumont M, Wille E, Calingasan NY, Tampellini D, Williams C, Gouras GK, Liby K, Sporn M, Beal MF, Lin MT (2009) Triterpenoid CDDO-methylamide improves memory and decreases amyloid plaques in a transgenic mouse model of Alzheimer’s disease. J Neurochem 109:502–512

    Article  PubMed  CAS  Google Scholar 

  • Esen N, Kielian T (2006) Central role for MyD88 in the responses of microglia to pathogen-associated molecular patterns. J Immunol 176:6802–6811

    PubMed  CAS  Google Scholar 

  • Ford AL, Goodsall AL, Hickey WF, Sedgwick JD (1995) Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting. Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4 T cells compared. J Immunol 154:4309–4321

    PubMed  CAS  Google Scholar 

  • Gekeler V, Ise W, Sanders KH, Ulrich WR, Beck J (1995) The leukotriene LTD4 receptor antagonist MK571 specifically modulates MRP associated multidrug resistance. Biochem Biophys Res Commun 208:345–352

    Article  PubMed  CAS  Google Scholar 

  • Graber DJ, Park PJ, Hickey WF, Harris BT (2011) Synthetic triterpenoid CDDO derivatives modulate cytoprotective or immunological properties in astrocytes, neurons, and microglia. J Neuroimmune Pharmacol 6:107–120

    Article  PubMed  Google Scholar 

  • Honda T, Honda Y, Favaloro FG, Gribble GW, Suh N, Place AE, Rendi MH, Sporn MB (2002) A novel dicyanotriterpenoid, 2-cyano-3, 12-dioxooleana-1, 9 (11)-dien-28-onitrile, active at picomolar concentrations for inhibition of nitric oxide production. Bioorg Med Chem Lett 12:1027–1030

    Article  PubMed  CAS  Google Scholar 

  • Huscher D, Thiele K, Gromnica-Ihle E, Hein G, Demary W, Dreher R, Zink A, Buttgereit F (2009) Dose-related patterns of glucocorticoid-induced side effects. Ann Rheum Dis 68:1119–1124

    Article  PubMed  CAS  Google Scholar 

  • Huuskonen J, Suuronen T, Miettinen R, van Groen T, Salminen A (2005) A refined in vitro model to study inflammatory responses in organotypic membrane culture of postnatal rat hippocampal slices. J Neuroinflammation 2:25

    Article  PubMed  Google Scholar 

  • Innamorato NG, Rojo AI, Garcia-Yague AJ, Yamamoto M, de Ceballos ML, Cuadrado A (2008) The transcription factor Nrf2 is a therapeutic target against brain inflammation. J Immunol 181:680–689

    PubMed  CAS  Google Scholar 

  • Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13:76–86

    Article  PubMed  CAS  Google Scholar 

  • Jin W, Zhu L, Guan Q, Chen G, Wang QF, Yin HX, Hang CH, Shi JX, Wang HD (2008) Influence of Nrf2 genotype on pulmonary NF-{kappa} B activity and inflammatory response after traumatic brain injury. Ann Clin Lab Sci 38:221–227

    PubMed  CAS  Google Scholar 

  • Jonat C, Rahmsdorf HJ, Park KK, Cato ACB, Gebel S, Ponta H, Herrlich P (1990) Antitumor promotion and anti-inflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell 62:1189–1204

    Article  PubMed  CAS  Google Scholar 

  • Kassel O, Sancono A, Krätzschmar J, Kreft B, Stassen M, Cato ACB (2001) Glucocorticoids inhibit MAP kinase via increased expression and decreased degradation of MKP-1. EMBO J 20:7108–7116

    Article  PubMed  CAS  Google Scholar 

  • Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116

    Article  PubMed  CAS  Google Scholar 

  • Knerlich F, Schilling L, Görlach C, Wahl M, Ehrenreich H, Sirén AL (1999) Temporal profile of expression and cellular localization of inducible nitric oxide synthase, interleukin-1 [beta] and interleukin converting enzyme after cryogenic lesion of the rat parietal cortex. Mol Brain Res 68:73–87

    Article  PubMed  CAS  Google Scholar 

  • Kurkowska-Jastrzbska I, Litwin T, Joniec I, Ciesielska A, Przybykowski A, Czonkowski A, Czonkowska A (2004) Dexamethasone protects against dopaminergic neurons damage in a mouse model of Parkinson’s disease. Int Immunopharmacol 4:1307–1318

    Article  Google Scholar 

  • Lee G, Schlichter L, Bendayan M, Bendayan R (2001) Functional expression of P-glycoprotein in rat brain microglia. J Pharmacol Exp Ther 299:204–212

    PubMed  CAS  Google Scholar 

  • Lee JM, Li J, Johnson DA, Stein TD, Kraft AD, Calkins MJ, Jakel RJ, Johnson JA (2005) Nrf2, a multi-organ protector? FASEB J 19:1061–1066

    Article  PubMed  Google Scholar 

  • Liby K, Hock T, Yore MM, Suh N, Place AE, Risingsong R, Williams CR, Royce DB, Honda T, Honda Y (2005) The synthetic triterpenoids, CDDO and CDDO-imidazolide, are potent inducers of heme oxygenase-1 and Nrf2/ARE signaling. Cancer Res 65:4789–4798

    Article  PubMed  CAS  Google Scholar 

  • Lin W, Wu RT, Wu T, Khor T, Wang H, Kong A (2008) Sulforaphane suppressed LPS-induced inflammation in mouse peritoneal macrophages through Nrf2 dependent pathway. Biochem Pharmacol 76:967–973

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Bendayan R, Wu XY (2001) Triton-X-100-modified polymer and microspheres for reversal of multidrug resistance. J Pharm Pharmacol 53:779–787

    Article  PubMed  CAS  Google Scholar 

  • Lossi L, Alasia S, Salio C, Merighi A (2009) Cell death and proliferation in acute slices and organotypic cultures of mammalian CNS. Prog Neurobiol 88:221–245

    Article  PubMed  Google Scholar 

  • Minami M, Kuraishi Y, Yamaguchi T, Nakai S, Hirai Y, Satoh M (1990) Convulsants induce interleukin-1 [beta] messenger RNA in rat brain. Biochem Biophys Res Commun 171:832–837

    Article  PubMed  CAS  Google Scholar 

  • Neymotin A, Calingasan NY, Wille E, Naseri N, Petri S, Damiano M, Liby KT, Risingsong R, Sporn M, Beal MF (2011) Neuroprotective effect of Nrf2/ARE activators, CDDO-ethylamide and CDDO-trifluoroethylamide in a mouse model of amyotrophic lateral sclerosis. Free Radic Biol Med 51:88–96

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuka T, Kubota A, Hirano T, Watanabe K, Yoshida H, Tsurufuji M, Iizuka Y, Konishi K, Tsurufuji S (1996) Glucocorticoid-mediated gene suppression of rat cytokine-induced neutrophil chemoattractant CINC/gro, a member of the interleukin-8 family, through impairment of NF-kappa B activation. J Biol Chem 271:1651–1669

    Article  PubMed  CAS  Google Scholar 

  • Osburn WO, Yates MS, Dolan PD, Chen S, Liby KT, Sporn MB, Taguchi K, Yamamoto M, Kensler TW (2008) Genetic or pharmacologic amplification of nrf2 signaling inhibits acute inflammatory liver injury in mice. Toxicol Sci 104:218–227

    Article  PubMed  CAS  Google Scholar 

  • Pan JZ, Ni L, Sodhi A, Aguanno A, Young W, Hart RP (2002) Cytokine activity contributes to induction of inflammatory cytokine mRNAs in spinal cord following contusion. J Neurosci Res 68:315–322

    Article  PubMed  CAS  Google Scholar 

  • Reddy NM, Suryanaraya V, Yates MS, Kleeberger SR, Hassoun PM, Yamamoto M, Liby KT, Sporn MB, Kensler TW, Reddy SP (2009) The triterpenoid CDDO-imidazolide confers potent protection against hyperoxic acute lung injury in mice. Am J Respir Crit Care Med 180:867–874

    Article  PubMed  CAS  Google Scholar 

  • Reid G, Wielinga P, Zelcer N, De Haas M, Van Deemter L, Wijnholds J, Balzarini J, Borst P (2003) Characterization of the transport of nucleoside analog drugs by the human multidrug resistance proteins MRP4 and MRP5. Mol Pharmacol 63:1094–1103

    Article  PubMed  CAS  Google Scholar 

  • Rice T, Larsen J, Rivest S, Yong VW (2007) Characterization of the early neuroinflammation after spinal cord injury in mice. J Neuropathol Exp Neurol 66:184–195

    Article  PubMed  CAS  Google Scholar 

  • Rushworth SA, MacEwan DJ, O’Connell MA (2008) Lipopolysaccharide-induced expression of NAD (P) H: quinone oxidoreductase 1 and heme oxygenase-1 protects against excessive inflammatory responses in human monocytes. J Immunol 181:6730–6737

    PubMed  CAS  Google Scholar 

  • Schäcke H, Döcke WD, Asadullah K (2002) Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther 96:23–43

    Article  PubMed  Google Scholar 

  • Sinz EH, Kochanek PM, Dixon CE, Clark RSB, Carcillo JA, Schiding JK, Chen M, Wisniewski SR, Carlos TM, Williams D (1999) Inducible nitric oxide synthase is an endogenous neuroprotectant after traumatic brain injury in rats and mice. J Clin Invest 104:647–668

    Article  PubMed  CAS  Google Scholar 

  • Stack C, Ho D, Wille E, Calingasan NY, Williams C, Liby K, Sporn M, Dumont M, Beal MF (2010) Triterpenoids CDDO-ethyl amide and CDDO-trifluoroethyl amide improve the behavioral phenotype and brain pathology in a transgenic mouse model of Huntington’s disease. Free Radic Biol Med 49:147–158

    Article  PubMed  CAS  Google Scholar 

  • Stahn C, Löwenberg M, Hommes DW, Buttgereit F (2007) Molecular mechanisms of glucocorticoid action and selective glucocorticoid receptor agonists. Mol Cell Endocrinol 275:71–78

    Article  PubMed  CAS  Google Scholar 

  • Suh N, Wang Y, Honda T, Gribble GW, Dmitrovsky E, Hickey WF, Maue RA, Place AE, Porter DM, Spinella MJ, Williams CR, Wu G, Dannenberg AJ, Flanders KC, Letterio JJ, Mangelsdorf DJ, Nathan CF, Nguyen L, Porter WW, Ren RF, Roberts AB, Roche NS, Subbaramaiah K, Sporn MB (1999) A novel synthetic oleanane triterpenoid, 2-cyano-3, 12-dioxoolean-1, 9-dien-28-oic acid, with potent differentiating, antiproliferative, and anti-inflammatory activity. Cancer Res 59:336–341

    PubMed  CAS  Google Scholar 

  • Sussan TE, Rangasamy T, Blake DJ, Malhotra D, El-Haddad H, Bedja D, Yates MS, Kombairaju P, Yamamoto M, Liby KT (2009) Targeting Nrf2 with the triterpenoid CDDO-imidazolide attenuates cigarette smoke-induced emphysema and cardiac dysfunction in mice. Proc Natl Acad Sci U S A 106:250–255

    Article  PubMed  CAS  Google Scholar 

  • Thimmulappa RK, Scollick C, Traore K, Yates M, Trush MA, Liby KT, Sporn MB, Yamamoto M, Kensler TW, Biswal S (2006) Nrf2 dependent protection from LPS induced inflammatory response and mortality by CDDO-imidazolide. Biochem Biophys Res Commun 351:883–889

    Article  PubMed  CAS  Google Scholar 

  • Tran TA, McCoy MK, Sporn MB, Tansey MG (2008) The synthetic triterpenoid CDDO-methyl ester modulates microglial activities, inhibits TNF production, and provides dopaminergic neuroprotection. J Neuroinflammation 5:14

    Article  PubMed  Google Scholar 

  • Wang J, Fields J, Zhao C, Langer J, Thimmulappa RK, Kensler TW, Yamamoto M, Biswal S, Doré S (2007) Role of Nrf2 in protection against intracerebral hemorrhage injury in mice. Free Radic Biol Med 43:408–414

    Article  PubMed  Google Scholar 

  • Wilms H, Sievers J, Rickert U, Rostami-Yazdi M, Mrowietz U, Lucius R (2010) Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1β, TNF-α and IL-6 in an in-vitro model of brain inflammation. J Neuroinflammation 7:30

    Article  PubMed  Google Scholar 

  • Wollmer MA, Lucius R, Wilms H, Held-Feindt J, Sievers J, Mentlein R (2001) ATP and adenosine induce ramification of microglia in vitro. J Neuroimmunol 115:19–27

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Hellerbrand C, Köhler UA, Bugnon P, Kan YW, Werner S, Beyer TA (2008) The Nrf2 transcription factor protects from toxin-induced liver injury and fibrosis. Lab Investig 88:1068–1078

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Calingasan NY, Thomas B, Chaturvedi RK, Kiaei M, Wille EJ, Liby KT, Williams C, Royce D, Risingsong R, Musiek ES, Morrow JD, Sporn M, Beal MF (2009) Neuroprotective effects of the triterpenoid, CDDO methyl amide, a potent inducer of Nrf2-mediated transcription. PLoS One 4:e5757

    Article  PubMed  Google Scholar 

  • Yates MS, Tauchi M, Katsuoka F, Flanders KC, Liby KT, Honda T, Gribble GW, Johnson DA, Johnson JA, Burton NC, Guilarte TR, Yamamoto M, Sporn MB, Kensler TW (2007) Pharmacodynamic characterization of chemopreventive triterpenoids as exceptionally potent inducers of Nrf2-regulated genes. Mol Cancer Ther 6:154–162

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Zhang Z, Artelt M, Burnet M, Schluesener HJ (2007) Dexamethasone attenuates early expression of three molecules associated with microglia/macrophages activation following rat traumatic brain injury. Acta Neuropathol 113:675–682

    Article  PubMed  CAS  Google Scholar 

  • Zordan-Nudo T, Ling V, Liu Z, Georges E (1993) Effects of nonionic detergents on P-glycoprotein drug binding and reversal of multidrug resistance. Cancer Res 53:5994–6000

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

DJG, WFH, and BTH were supported by the Department of Pathology, Dartmouth Medical School. DJG and BTH received grant support from Reata Pharmaceutical. DJG, EWS, and BTH received grant support from the ALS Center at Dartmouth Hitchcock Medical Center. The CDDO derivatives were generously supplied by Michael Sporn and Karen Liby of Dartmouth Medical School. Quercetin dihydrate and luteolin were generously supplied by Tom Lahey of ImmunoBiotics.

Conflict of interest disclosure

The authors state that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Graber.

Additional information

Disclaimers: DJG and BTH received grant support from Reata Pharmaceuticals. The CDDO derivatives were generously supplied by Michael Sporn and Karen Liby of Dartmouth Medical School. Quercetin dihydrate and luteolin were generously supplied by Tom Lahey of ImmunoBiotics.

Sources of support: Work was supported with funds from Reata Pharmaceuticals, ALS Center at Dartmouth Hitchcock Medical Center, and the Dept. of Pathology at Dartmouth Medical School.

David J. Graber and Brent T. Harris authors who are guarantors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graber, D.J., Hickey, W.F., Stommel, E.W. et al. Anti-Inflammatory Efficacy of Dexamethasone and Nrf2 Activators in the CNS Using Brain Slices as a Model of Acute Injury. J Neuroimmune Pharmacol 7, 266–278 (2012). https://doi.org/10.1007/s11481-011-9338-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-011-9338-8

Keywords

Navigation