Skip to main content
Log in

Quantum Theory of Surface Plasmon Polaritons: Planar and Spherical Geometries

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A quantum theory of retarded surface plasmons on a metal–vacuum interface is formulated, by analogy with the well-known and widely exploited theory of exciton-polaritons. The Hamiltonian for mutually interacting instantaneous surface plasmons and transverse electromagnetic modes is diagonalized with recourse to a Hopfield–Bogoljubov transformation, in order to obtain a new family of modes, to be identified with retarded plasmons. The interaction with nearby dipolar emitters is treated with a full quantum formalism based on a general definition of modal effective volumes. The illustrative cases of a planar surface and of a spherical nanoparticle are considered in detail. In the ideal situation of absence of dissipation, as an effect of the conservation of in-plane wavevector, retarded plasmons on a planar surface represent true stationary states (which are usually called surface plasmon polaritons), whereas retarded plasmons in a spherical nanoparticle, characterized by frequencies that overlap with the transverse electromagnetic continuum, become resonances with a finite radiative broadening. The theory presented constitutes a suitable full quantum framework for the study of nonperturbative and nonlinear effects in plasmonic nanosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. We notice that volume and surface plasmons are collective excitations that are formed in the subspace of electron–hole pair excitations, which have integer spin and, therefore, bosonic character. Bosonic commutation relation is obeyed in the limit of weak excitation, while corrections are expected to be of the order of P/V, where P is the number of excited plasmons and V, the crystal volume. The situation is analogous to the case of exciton states, as discussed in Hopfield’s seminal work (Ref. [34]).

  2. In the dipole gauge, the electrostatic potential ϕ is not used; the Coulomb interaction arouses from the longitudinal part of a P 2 term in the Hamiltonian. Light–matter coupling is included by means of the Power–Zienau transformation with a term of the form −μE. In this work, however, we employ the Coulomb gauge in order to keep the instantaneous and transverse characters of the field separated. On the choice of the gauge, see also Refs. [22] and [50].

  3. Notice that in Ref. [65] a different notation is used. Polarizations with λ=1 and 2 represent M and N vector wave functions, respectively.

References

  1. Stockman MI (2011) Opt Express 19(22):22029

    Article  Google Scholar 

  2. Ford G, Weber W (1984) Phys Rep 113(4):195

    Article  CAS  Google Scholar 

  3. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer tracts in modern physics, vol 111. Springer, Berlin

    Google Scholar 

  4. Kim YS, Leung P, George TF (1988) Surf Sci 195:1

    Article  CAS  Google Scholar 

  5. Dung HT, Knöll L, Welsch DG (2001) Phys Rev A 64:013804

    Article  Google Scholar 

  6. Mertens H, Koenderink AF, Polman A (2007) Phys Rev B 76:115123

    Article  Google Scholar 

  7. Mayergoyz ID, Fredkin DR, Zhang Z (2005) Phys Rev B 72:155412

    Article  Google Scholar 

  8. Hohenester U, Krenn J (2005) Phys Rev B 72:195429

    Article  Google Scholar 

  9. Hohenester U, Trügler A (2012) Comput Phys Commun 183(2):370

    Article  CAS  Google Scholar 

  10. Yurkin MA, Hoekstra AG (2011) Quant J Spectrosc Ra 112(13):2234

    Article  CAS  Google Scholar 

  11. D’Agostino S, Della Sala F, Andreani LC (2013) Phys Rev B 87:205413

    Article  Google Scholar 

  12. Mohammadi A, Sandoghdar V, Agio M (2008) New J Phys 10(10):105015

    Article  Google Scholar 

  13. Huttner B, Baumberg JJ, Barnett SM (1991) Europhys Lett 16(2):177

    Article  Google Scholar 

  14. Dung HT, Knöll L, Welsch DG (1998) Phys Rev A 57:3931

    Article  CAS  Google Scholar 

  15. Di Stefano O, Savasta S, Girlanda R (2000) Phys. Rev. A 61:023803

    Article  Google Scholar 

  16. Bhat NAR, Sipe JE (2006) Phys Rev A 73(6):063808

    Article  Google Scholar 

  17. Van Vlack C, Kristensen PT, Hughes S (2012) Phys. Rev. B 85(7):075303

    Article  Google Scholar 

  18. D’Agostino S, Alpeggiani F, Andreani LC (2013) Opt Express 21:27602

    Article  Google Scholar 

  19. Ge RC, Van Vlack C, Yao P, Young JF, Hughes S (2013) Phys Rev B 87(20):205425

    Article  Google Scholar 

  20. Ritchie RH, Wilems RE (1969) Phys Rev 178:372

    Article  Google Scholar 

  21. Elson JM, Ritchie RH (1971) Phys Rev B 4:4129

    Article  Google Scholar 

  22. Babiker M, Barton G (1976) Phys J A Math Gen 9(1):129

    Article  Google Scholar 

  23. Barton G (1979) Rep Prog Phys 42(6):963

    Article  CAS  Google Scholar 

  24. Ballester D, Tame MS, Lee C, Lee J, Kim MS (2009) Phys Rev A 79:053845

    Article  Google Scholar 

  25. Archambault A, Marquier F, Greffet JJ, Arnold C (2010) Phys Rev B 82:035411

    Article  Google Scholar 

  26. Bergman DJ, Stockman MI (2003) Phys Rev Lett 90:027402

    Article  Google Scholar 

  27. Gerard JM, Gayral B (1999) J Lightwave Technol 17(11):2089

    Article  CAS  Google Scholar 

  28. Kristensen PT, Van Vlack C, Hughes S (2012) Opt Lett 37(10):1649

    Article  CAS  Google Scholar 

  29. Sauvan C, Hugonin JP, Maksymov IS, Lalanne P (2013) Phys Rev Lett 110(23):237401

    Article  CAS  Google Scholar 

  30. Maier SA (2006) Opt Express 14(5):1957

    Article  Google Scholar 

  31. Sun G, Khurgin JB (2011) In: Shvets G, Tsukerman I (eds) Plasmonics and plasmonic metamaterials: analysis and applications. World Scientific, Singapore

  32. Agio M (2012) Nanoscale 4:692

    Article  CAS  Google Scholar 

  33. Fano U (1956) Phys Rev 103:1202

    Article  CAS  Google Scholar 

  34. Hopfield JJ (1958) Phys Rev 112:1555

    Article  CAS  Google Scholar 

  35. Agranovich V (1960) Sov Phys JETP 37:307

    Google Scholar 

  36. Andreani LC (1995) In: Burstein E, Weisbuch C (eds) Confined electrons and photons, NATO ASI series, vol 340. Springer, Berlin, pp 57–112

  37. Bogoljubov N (1958) Il Nuovo Cimento 7:794

    Article  Google Scholar 

  38. Quattropani A, Andreani LC, Bassani F (1986) Il Nuovo Cimento D 7(1):55

    Article  Google Scholar 

  39. Brako R, Hrnčević J, Šunjić M (1975) Z Phys B 21:193

    Article  Google Scholar 

  40. Landau L, Lifshitz E, Pitaevskii L (1984) Electrodynamics of continuous media. Course of theoretical physics, vol 8, 2nd edn. Pergamon, Oxford

    Google Scholar 

  41. Larkin IA, Stockman MI, Achermann M, Klimov VI (2004) Phys Rev B 69:121403

    Article  Google Scholar 

  42. Scholl JA, Koh AL, Dionne JA (2012) Nature 483(7390):421

    Article  CAS  Google Scholar 

  43. Trügler A, Hohenester U (2008) Phys Rev B 77(11):115403

    Article  Google Scholar 

  44. Waks E, Sridharan D (2010) Phys Rev A 82(4):043845

    Article  Google Scholar 

  45. Savasta S, Saija R, Ridolfo A, Di Stefano O, Denti P, Borghese F (2010) ACS Nano 4(11):6369

    Article  CAS  Google Scholar 

  46. He Y, Jiang C, Chen B, Li JJ, Zhu KD (2012) Opt Lett 37(14):2943

    Article  CAS  Google Scholar 

  47. Dvoynenko MM, Wang JK (2013) Opt Lett 38(5):760

    Article  Google Scholar 

  48. Andreani LC, Panzarini G, Gérard JM (1999) Phys Rev B 60:13276

    Article  CAS  Google Scholar 

  49. Alpeggiani F, D’Agostino S, Andreani LC (2012) Phys Rev B 86:035421

    Article  Google Scholar 

  50. Todorov Y, Sirtori C (2012) Phys Rev B 85:045304

    Article  Google Scholar 

  51. Anderson PW (1961) Phys Rev 124:41

    Article  CAS  Google Scholar 

  52. Fano U (1961) Phys Rev 124:1866

    Article  CAS  Google Scholar 

  53. Barnes WL (2006) J Opt A Pure Appl Opt 8(4):S87

    Article  Google Scholar 

  54. Ciuti C, Bastard G, Carusotto I (2005) Phys Rev B 72:115303

    Article  Google Scholar 

  55. Ciuti C, Carusotto I (2006) Phys Rev A 74:033811

    Article  Google Scholar 

  56. Stassi R, Ridolfo A, Di Stefano O, Hartmann MJ, Savasta S (2013) Phys Rev Lett 110:243601

    Article  CAS  Google Scholar 

  57. Dodonov V (2010) Phys Scr 82(3):038105

    Article  Google Scholar 

  58. Ferretti S, Gerace D (2012) Phys Rev B 85:033303

    Article  Google Scholar 

  59. Ferretti S, Savona V, Gerace D (2013) New J Phys 15(2):025012

    Article  Google Scholar 

  60. Colas des Francs G, Derom S, Vincent R, Bouhelier A, Dereux A (2012) Int J Opt 2012:1

    Article  Google Scholar 

  61. Gerace D, Andreani LC (2007) Phys Rev B 75:235325

    Article  Google Scholar 

  62. Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) Nat Mater 9(9):707

    Article  Google Scholar 

  63. Giannini V, Francescato Y, Amrania H, Phillips CC, Maier SA (2011) Nano Lett 11(7):2835

    Article  CAS  Google Scholar 

  64. D’Agostino S (2013) In: Della Sala F, D’Agostino S (eds) Handbook of molecular plasmonics, chap 3. Pan Stanford Publishing, Singapore, p 137

  65. Tai CT (1993) Dyadic Green functions in electromagnetic theory. IEEE, Piscataway

    Google Scholar 

  66. Prosperetti A (2011) Advanced mathematics for applications. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Alpeggiani.

Appendices

Appendix A: Planar Geometry

In this appendix, we sketch the derivation of the retarded plasmon polariton modes with the help of a Hopfield–Bogoljubov transformation of the instantaneous plasmons coupled to the transverse electromagnetic field.

The interaction terms of the Hamiltonian in Eq. 14 assume the form

$$H_{\mathrm{I}} = i\int \mathrm{d}^{2} \mathbf{k}_{\parallel}\mathrm{d} k_{z}\, \hbar C(k_{z};\mathbf{k}_{\parallel}) \left(\mathrm{b}_{\mathbf{k}_{\parallel}}^{\dagger} - \mathrm{b}_{-\mathbf{k}_{\parallel}}\right)\left(\mathrm{a}_{\mathbf{k}_{\parallel},k_{z}} + \mathrm{a}_{-\mathbf{k}_{\parallel},-k_{z}}^{\dagger}\right),$$
(43)
$$H_{\text{II}} = \int \mathrm{d}^{2} \mathbf{k}_{\parallel} \mathrm{d} k_{z}\mathrm{d} k_{z}^{\prime}\,\hbar D(k_{z},k_{z}^{\prime};\mathbf{k}_{\parallel})\left(\mathrm{a}_{\mathbf{k}_{\parallel},k_{z}} + \mathrm{a}_{-\mathbf{k}_{\parallel},-k_{z}}^{\dagger}\right)\\ \times\,\left(\mathrm{a}_{\mathbf{k}_{\parallel},k_{z}^{\prime}}^{\dagger} + \mathrm{a}_{-\mathbf{k}_{\parallel},-k_{z}^{\prime}}\right), $$
(44)

with the coefficients

$$\begin{array}{*{20}l} &C(k_{z};\mathbf{k}_{\parallel}) = \frac{\omega_{\mathrm{P}}^{2}}{4 k} \sqrt{\frac{k_{\parallel}}{\pi ck \omega_{\mathrm{s}}}};\quad \tilde{D}(k_{z},k_{z}^{\prime};\mathbf{k}_{\parallel}) = \frac{i\omega_{\mathrm{P}}^{2}(k_{z} k_{z}^{\prime} + k_{\parallel}^{2})}{8c\pi(k k^{\prime})^{\frac{3}{2}}}\\ &D(k_{z},k_{z}^{\prime};\mathbf{k}_{\parallel}) = \frac{\omega_{\mathrm{P}}^{2}}{8ck}\delta(k_{z}-k_{z}^{\prime}) + \mathcal{P}\!\!\;\frac{\tilde{D}(k_{z},k_{z}^{\prime};\mathbf{k}_{\parallel})}{k_{z}^{\prime} - k_{z}};\quad \end{array} $$

(𝓟 denotes the principal value).

The diagonalization of the Hamiltonian in Eq. 14 is obtained by replacing the expansion of Eq. 29 into Eq. 23 and collecting the terms in front of the unperturbed operators \(\mathrm {b}_{\mathbf {k}_{\parallel }},\mathrm {b}_{-\mathbf {k}_{\parallel }}^{\dagger },\mathrm {a}_{\mathbf {k}_{\parallel },k_{z}}\), and \(\mathrm {a}_{-\mathbf {k}_{\parallel },-k_{z}}^{\dagger }\), so that we obtain a system of four equations for the coefficients W,X(k z ),Y,Z(k z ). With some algebraic manipulation, the equations can be condensed into the form

$$\begin{array}{@{}rcl@{}} \frac{c}{2k}\left({k_{z}^{2}} + \mathbf{k}_{\parallel}^{2} - \frac{\Omega^{2}}{c^{2}} + \frac{\omega_{\mathrm{P}}^{2}}{2c^{2}}\right)\xi(k_{z}) \\ +\,\mathcal{P}\!\!\int\mathrm{d} k_{z}^{\prime}\,2\frac{\tilde{D}(k_{z},k_{z}^{\prime})}{k_{z}^{\prime} - k_{z}}\xi(k_{z}^{\prime}) = - i(W + Y)C(k), \end{array} $$
(45)

where ξ(k z )=X(k z )−Z(k z ).

Equation 45 can be solved with Kramers–Kronig relations, but attention must be paid to the fact that the integrand (considered as a function of the complex variable k z ) has additional poles in addition to that at k z = k z . In particular, if we introduce the quantities

$$ \Delta_{-}^{2} = \mathbf{k}_{\parallel}^{2} - \frac{\Omega^{2}}{c^{2}} + \frac{\omega_{\mathrm{P}}^{2}}{c^{2}},\qquad \Delta_{+}^{2} = \mathbf{k}_{\parallel}^{2} - \frac{\Omega^{2}}{c^{2}}, $$
(46)

and write ξ(k z ) in the form (𝓒 is an arbitrary constant)

$$ \xi(k_{z}) = \frac{i\mathcal{C}}{\sqrt{k}\,(k_{z} + i\Delta_{+})(k_{z} - i\Delta_{-})}, $$
(47)

upon integrating the integrand on a closed circuit in the upper complex plane like the one in Fig. 9 and taking the limit |k z | → ∞, the application of the Cauchy theorem leads to the expression

$$\begin{array}{@{}rcl@{}} &&\frac{c}{2 k^{\frac{3}{2}}}\left\{\left[\frac{i(\Delta_{+}^{2} + {k_{z}^{2}})(\Delta_{-}^{2} - k_{\parallel}^{2}) - (ik_{z}\Delta_{-} + k_{\parallel}^{2})(k_{z} + i\Delta_{+})(\Delta_{-} - \Delta_{+})}{(k_{z} + i\Delta_{+})(k_{z} - i\Delta_{-})(\Delta_{-}^{2} - k_{\parallel}^{2})}\right]\right.\\ &&+\left.\frac{i\omega_{\mathrm{P}}^{2}}{2c^{2}\,(k_{\parallel} + \Delta_{+})(\Delta_{-} - k_{\parallel})}\right\}\mathcal{C} = - i(W + Y)C(k). \end{array} $$
Fig. 9
figure 9

The path of integration of Eq. 45 in the complex k z plane

The equation has a nonzero solution for the constant 𝓒 if and only if the ( k z –dependent) term in the square brackets cancels; this happens when \(\Delta _{+}\Delta _{-} = k_{\parallel }^{2}\), i.e.,

$$ \Omega_{\mathbf{k}_{\parallel}}^{4} - \Omega_{\mathbf{k}_{\parallel}}^{2}\, \left[2\left(ck_{\parallel}\right)^{2} + \omega_{\mathrm{P}}^{2}\right] + \left(ck_{\parallel}\omega_{\mathrm{P}}\right)^{2} = 0, $$
(48)

whence the plasmon polariton dispersion relation in Eq. 30 is recovered.

The constant 𝓒 takes the value

$$\mathcal{C} = - k_{\parallel} \sqrt{\frac{ck_{\parallel}}{\pi\omega_{\mathrm{s}}}}\,(\Delta_{-} - \Delta_{+})(W + Y). $$

Once 𝓒 is known, from the original system of equations, it is possible to work out the expression for the coefficients in the expansion of α k:

$$\xi(k_{z}) = -ik_{\parallel}\sqrt{\frac{ck_{\parallel}}{\pi k \omega_{\mathrm{s}}}}\frac{\Delta_{-} - \Delta_{+}} {(k_{z}+i\Delta_{+})(k_{z}-i\Delta_{-})};$$
(49)
$$W = \mathcal{K}\left(1+\frac{\Omega_{\mathbf{k}_{\parallel}}}{\omega_{\mathrm{s}}}\right); \quad Y = \mathcal{K}\left(1-\frac{\Omega_{\mathbf{k}_{\parallel}}}{\omega_{\mathrm{s}}}\right);\\ X = \mathcal{K}\left(1+\frac{\Omega_{\mathbf{k}_{\parallel}}}{ck}\right)\xi;\quad Z = \mathcal{K}\left(\frac{\Omega_{\mathbf{k}_{\parallel}}}{ck} - 1\right)\xi. $$
(50)

The arbitrary constant 𝓚 can be fixed from the normalization conditions \(\left <\Psi \right |_{}\mathrm {\upalpha }_{\mathbf {k}_{\parallel }}\mathrm {\upalpha }_{\mathbf {k}_{\parallel }}^{\dagger } - \mathrm {\upalpha }_{\mathbf {k}_{\parallel }}^{\dagger }\mathrm {\upalpha }_{\mathbf {k}_{\parallel }} \left |\Psi \right >_{\hspace {-0.1em}} = 1\) on a generic normalized quantum state |Ψ〉. The result is

$$ \mathcal{K}^{2} = \frac{1}{4} \left(\frac{\omega_{\mathrm{s}}}{\Omega_{\mathbf{k}_{\parallel}}}\right)\frac{(\Delta_{-}+\Delta_{+})k_{\parallel}}{\Delta_{-}^{2} + \Delta_{+}^{2}}. $$
(51)

The behavior of W and Y as a function of k is reported in Fig. 1.

The electric field operator is expanded onto a family of modes E k(r) according to Eq. 32. The expression for the modes can be calculated from the commutation relation [α k, Eqs − Ȧ] = E k, which leads to

$$\begin{array}{@{}rcl@{}} \mathbf{E}_{\mathbf{k}_{\parallel}}(\mathbf{r}) = (W-Y)\sqrt{\frac{\hbar\omega_{\mathrm{s}}}{16\pi^{2}\varepsilon_{0}k_{\parallel}}} \mathbf{E}_{\text{qs},\mathbf{k}_{\parallel}}(\mathbf{r})\;-\\ i\int\mathrm{d} k_{z}\,ck \left[X(-k_{z})+Z(-k_{z})\right]\mathbf{A}_{\mathrm{T},\mathbf{k}_{\parallel},k_{z}}(\mathbf{r}) \end{array} $$
(52)

\(\left (k = \sqrt {k_{\parallel }^{2} + {k_{z}^{2}}}\right )\). With the help of Eq. 50 and some results on Fourier transforms in the k z space, we find

$$ \mathbf{E}_{\mathbf{k}_{\parallel}} {}={} \mathcal{K}\frac{\Omega_{\mathbf{k}_{\parallel}}k_{\parallel}}{\pi(\Delta_{+}{}+{}\Delta_{-})} \sqrt{\frac{\hbar k_{\parallel}}{\varepsilon_{0}\omega_{\mathrm{s}}}} \left({}-i\hat{\mathbf{k}_{\parallel}}\pm\frac{k_{\parallel}}{\Delta_{\pm}}\hat{\mathbf{z}}{}\right) e^{i\mathbf{k}_{\parallel}\cdot\mathbf{\rho}\,\mp\,\Delta_{\pm}z} $$
(53)

(the upper and lower signs refer to the regions z < 0 and z > 0, respectively, k̂ is the unit vector directed as k ). Equation 53 is analogous to the expression of the field obtained from classical electrodynamics [3, 21].

Appendix B: Spherical Geometry

In this appendix, we briefly present how the eigenvalue Eq. 39 is derived. The transverse vector potential of Eq. 18 is expanded onto the electromagnetic vector wave functions [65]

$$\begin{array}{*{20}l} &\mathbf{A}_{\mathrm{T},l,k}^{(1)}(\mathbf{r}) = -\mathcal{N} j_{l}{kr}\frac{\partial}{\partial\theta}\mathrm{P}_{l}(\cos\theta)\hat{\mathbf{\varphi}};\\ &\mathbf{A}_{\mathrm{T},l,k}^{(2)}(\mathbf{r}) = \mathcal{N} \left[l(l+1)\frac{j_{l}(kr)}{kr}\mathrm{P}_{l}(\cos\theta)\hat{\mathbf{r}}\right.\\ &{\kern5.7pc}+ \left.\frac{1}{kr}\frac{\partial}{\partial r}\left[r j_{l}(kr)\right] \frac{\partial}{\partial\theta}\mathrm{P}_{l}(\cos\theta)\hat{\mathbf{\theta}}\right]\end{array} $$

(j l (x) denotes the spherical Bessel function of order l). Polarizations with λ=1 and 2 correspond to TE and TM modes, respectively.Footnote 3 Transverse modes are indexed by the continuous wavenumber k, which is related to the modal frequency ω k =c k. For each l, the frequencies ω k encompass the whole spectrum, overlapping with the instantaneous frequencies ω l .

The continuous index k is discretized into a finite number of retarded modes up to a cutoff value N (the modes are labeled by the index ν = 1, 2, …, N). This can be accomplished by supposing to enclose the system in a large sphere of radius L, with L>>R. According to the Sturm–Liouville theory [66], the values k ν implicitly provided by the equation

$$ j_{l}(k_{\nu} L) = 0, $$
(54)

constitute an orthogonal basis of electromagnetic modes. Consequently, the normalization factor 𝓝 can be shown to assume the form

$$ \mathcal{N} = \sqrt{\frac{\hbar(2l+1)}{4\pi l (l+1)\varepsilon_{0} ck_{\nu}\,L^{3}\,j_{l+1}^{2}(k_{\nu} L)}}. $$
(55)

We look for Hopfield–Bogoljubov operators of the form

$$ \mathrm{\upalpha}_{l} = W_{l} \mathrm{b}_{l} + Y_{l}\mathrm{b}_{l}^{\dagger} + \sum_{\nu}\left(X_{l,\nu}\mathrm{a}_{\nu} + Z_{l,\nu}\mathrm{a}_{\nu}^{\dagger}\right), $$
(56)

which satisfy the commutation relation in Eq. 23. After defining the adimensional quantities ω̃ l = ω l /ω P, k̃ = ck/ω P , R̃ = ω P R/c, and L̃ = ω P L/c, we can introduce the (N + 1)-dimensional vector ξ (l), whose components are (𝓚 is a normalization constant):

$$\begin{array}{*{20}l} &\xi_{\nu}^{(l)} = - i\frac{\mathcal{K}}{\sqrt{\tilde{k}}}(X_{l,\nu} - Z_{l,\nu}), \qquad \nu = 1,\dots,N;\\ &\xi_{N+1}^{(l)} = \frac{\mathcal{K}}{\sqrt{\tilde{\omega}_{l}}}(W_{l} + Y_{l}). \end{array} $$

By collecting the terms in front of the quantum operators \(\mathrm {b}_{l},\mathrm {b}_{l}^{\dagger },\mathrm {a}_{l,\nu }\), and \(\mathrm {a}_{l,\nu }^{\dagger }\), Eq. 23 can be reduced to a linear system of equations. With some further algebraic manipulation, we are led to the eigenproblem in Eq. 39, with the (N+1)×(N+1) symmetric matrix 𝕄(l) defined as follows:

$$\begin{array}{*{20}l} &\mathbb{M}^{(l)}_{\nu,\nu} = \frac{\tilde{R}^{3}}{j_{l+1}^{2}(k_{\nu}L)\tilde{L}^{3}} \left[j_{l+1}^{2}(k_{\nu}R) + {j_{l}^{2}}(k_{\nu}R)\left(1+\frac{2(l+1)}{(k_{\nu}R)^{2}}\right)\right.\\ &{\kern7pc}-\left.(2l+3)\frac{j_{l}(k_{\nu}R)j_{l+1}(k_{\nu}R)}{k_{\nu}R}\right] + \tilde{k}_{\nu}^{2};\\ &\mathbb{M}^{(l)}_{\nu,\mu} = \frac{2\tilde{R}}{|j_{l+1}(k_{\nu}L)j_{l+1}(k_{\mu}L)|\tilde{L}^{3}}\\ &{\kern2.5pc}\times\left\{\frac{\tilde{R}}{\tilde{k}_{\nu}^{2} \,-\, \tilde{k}^{2}_{\mu}} \left[\!\tilde{k}_{\mu} j_{l}(k_{\mu}R) j_{l+1}(k_{\nu}R)- \tilde{k}_{\nu} j_{l}(k_{\nu}R) j_{l+1}(k_{\mu}R)\!\right]\right. \\ &{\kern4pc}\left. + \frac{l+1}{\tilde{k}_{\nu}\tilde{k}_{\mu}} j_{l}(k_{\nu}R) j_{l}(k_{\mu}R)\right\};\\ &\mathbb{M}^{(l)}_{\nu,N+1} = \mathbb{M}^{(l)}_{N+1,\nu} = -\sqrt{\frac{2l(l+1)}{(2l+1)\tilde{R}\tilde{L}^{3}}}\; \frac{\tilde{R}\;j_{l}(k_{\nu}R)}{\tilde{k}_{\nu}\, |j_{l+1}(k_{\nu}L)|};\\ &\mathbb{M}^{(l)}_{N+1,N+1} {}={} \tilde{w}_{l}^{2}; \qquad\quad\text{with}\quad \nu, \mu = 1,2,\dots,N \quad\text{and}\quad \nu \neq \mu. \end{array} $$

The eigenproblem is solved with numerical methods. The value of the coefficients W l ,Y l ,X l,ν , and Z l,ν can be extracted from the definition of eigenvector ξ (l) with the additional relations

ω l (W l Y l ) = Ω l (W l + Y l ) ;

ck (X l,ν + Z l,ν ) = Ω l (X l,ν Z l, ν ).

The normalization constant can be calculated from the condition \(\left <\Psi \right |_{}\mathrm {\upalpha }_{l}\mathrm {\upalpha }_{l}^{\dagger } - \mathrm {\upalpha }_{l}^{\dagger }\mathrm {\upalpha }_{l} \left |\Psi \right >_{\hspace {-0.1em}} = 1\) with the operator in Eq. 56. The result is |ξ (l)|2=ω P l , which, for an eigenvector with unitary normalization, leads simply to \(\mathcal {K} = \sqrt {\omega _{\mathrm {P}} / \Omega _{l}}\).

The solutions of the vector eigenproblem (39) are shown by the dots in Fig. 7 and compared with the corresponding electrodynamical solutions. The latter are obtained by solving for a complex ω the equation

$$ \frac{h_{l}^{(1)}(kR)}{\frac{\partial}{\partial r}[r\,h^{(1)}_{l}(kr)]_{r=R}} = \varepsilon(\omega)\, \frac{i_{l}(nkR)}{\frac{\partial}{\partial r}[r\,i_{l}(nkr)]_{r=R}}, $$
(57)

with a Drude dielectric function \(\varepsilon = 1 - \omega _{\mathrm {P}}^{2}/\omega ^{2}\). In the equation, k=ω/c, \(n = \sqrt {\varepsilon }\), \(h^{(1)}_{l}(x)\) is the spherical Hankel function of the first kind, and i l (x) is the modified spherical Bessel function of the first kind. The modal frequency and radiative width are related to the real and imaginary parts of the solution by Ω l =R(ω) and γ rad=−2I(ω), respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alpeggiani, F., Andreani, L.C. Quantum Theory of Surface Plasmon Polaritons: Planar and Spherical Geometries. Plasmonics 9, 965–978 (2014). https://doi.org/10.1007/s11468-014-9703-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9703-6

Keywords

Navigation