Skip to main content
Log in

Propagation Loss of Long-Range Surface Plasmon Polariton Gold Stripe Waveguides in the Thin-Film Limit

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Propagation loss experienced by long-range plasmon polaritons in ultrathin gold stripe waveguides embedded in different polymer cladding materials was studied and correlated with atomic-scale characterization of the gold film structure. We identify the main sources of experimentally observed propagation loss which deviates from ideal values in the thin-film limit. Increased loss can be translated to an increased effective thickness of the ultrathin films due to incomplete surface coverage and the presence of diffuse interfaces, both of which depend significantly on the choice of cladding material. The results illustrate the importance of atomic-scale dynamics of metal film formation for the selection of optimum substrate materials for surface plasmon polariton waveguides, resonant transmission structures, and semitransparent electrical contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berini P (2009) Long-range surface plasmon polaritons. Adv Opt Photon 1:484–588

    Article  CAS  Google Scholar 

  2. Berini P (1999) Plasmon-polariton modes guided by a metal film of finite width. Opt Lett 24:1011-1013

    Article  CAS  Google Scholar 

  3. Gather M, Meerholz K, Danz N, Leosson K (2010) Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer. Nat Photon 4:457–461

    Article  CAS  Google Scholar 

  4. DeLeon I, Berini P (2010) Amplification of long-range surface plasmons by a dipolar gain medium. Nat Photon 4:382–387

    Article  CAS  Google Scholar 

  5. Leosson K, Nikolajsen T, Boltasseva A, Bozhevolnyi SI (2006) Long-range surface plasmon polariton nanowire waveguides for device applications. Opt Express 14:314–319

    Article  CAS  Google Scholar 

  6. Leosson K, Rosenzveig T, Hermannsson PG, Boltasseva A (2008) Compact plasmonic variable optical attenuator. Opt Express 16:15546–15562

    Article  CAS  Google Scholar 

  7. Tassin P, Koschny T, Kafesaki M, Soukoulis CM (2012) A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics. Nat Photon 6:259–264

    Article  CAS  Google Scholar 

  8. Park S, Ju J, Kim J, Kim M, Park S, Lee J, Lee W, Lee M (2009) Sub-dB/cm propagation loss in silver stripe waveguides. Opt Express 17:697–702

    Article  CAS  Google Scholar 

  9. Leosson K, Ingason AS, Agnarsson B, Kossoy A, Olafsson S, Gather MC (2013) Ultra-thin gold films on transparent polymers. Nanophotonics 2:3–11

    Article  CAS  Google Scholar 

  10. Boltasseva A, Nikolajsen T, Leosson K, Kjaer K, Larsen MS, Bozhevolnyi SI (2005) Integrated optical components utilizing long range surface plasmon polaritons. J Lightw Technol 23:413-422

    Article  Google Scholar 

  11. Hövel M, Gompf B, Dressel M (2010) Dielectric properties of ultrathin metal films around the percolation threshold. Phys Rev B 81:035402

    Article  Google Scholar 

  12. Søndergaard T., Bozhevolnyi SI (2007) Slow-plasmon resonant nanostructures: scattering and field enhancements. Phys Rev B 75:073402

    Article  Google Scholar 

  13. Tonchev S, Parriaux O (2013) Recovery of lost photons in plasmon-mediated transmission through continuous metal film. Plasmonics 8(2):949–954. doi:10.1007/s11468-013-9495-0

    Article  CAS  Google Scholar 

  14. Leosson K, et al (2012) Comparing resonant photon tunneling via cavity modes and Tamm plasmon polariton modes in metal-coated Bragg mirrors. Opt Lett 37:4026–4028

    Article  CAS  Google Scholar 

  15. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Google Scholar 

  16. Olmon RL, Slovick B, Johnson TW, Shelton D, Oh S-H, Boreman GD, Raschke MBOptical dielectric function of gold. Phys Rev B 86:235147

  17. Wiener A, Fernández-Domínguez AI, Horsfield AP, Pendry JB, Maier SA (2012) Nonlocal effects in the nanofocusing performance of plasmonic tips. Nano Lett 12:3308–3314

    Article  CAS  Google Scholar 

  18. Kossoy A, Simakov D, Olafsson S, Leosson K (2013) Determining surface coverage of ultra-thin gold films from X-ray reflectivity measurements. Thin Solid Films 536:50–53. doi:10.1016/j.tsf.2013.03.057

    Article  CAS  Google Scholar 

  19. Lahoud N, Mattiussi GA, Berini P (2006) Thermally activated variable attenuation of long-range surface plasmon-polariton waves. J Lightwave Technol 24:4391–4402

    Article  Google Scholar 

  20. Houbertz R, et al (2003) Inorganicorganic hybrid materials for application in optical devices. Thin Solid Films 442:194–200

    Article  CAS  Google Scholar 

  21. Chen L-Y, Tsai W-S, Hsu W-H, Chen K-Y, Wang W-S (2007) Fabrication and characterization of benzocyclobutene optical waveguides by UV pulsed-laser illumination. IEEE J Quantum Electron 43:303–310

    Article  CAS  Google Scholar 

  22. Romanov VP, Ulyanov SV, Uzdin VM, Nowak G, Shokuie K, Zabel H (2010) Separation of the diffuse contribution to the specular X-ray scattering of multilayer films. Phys Rev B 82:165416

    Article  Google Scholar 

  23. Schlomka JP, Tolan M, Schwalowsky L, Seeck OH, Stettner J, Press W (1995) X-ray diffraction from Si/Ge layers: diffuse scattering in the region of total external reflection. Phys Rev B 51:2311–2321

    Article  CAS  Google Scholar 

  24. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370-4379

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Icelandic Research Fund, the FP7 IRSES POLATER and POLAPHEN projects, as well as the ESF PLASMON-BIONANOSENSE network. The authors wish to thank Stéphane Kena-Cohen and Stefan Maier for the fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristjan Leosson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slovinsky, I., Stefansson, G.K., Kossoy, A. et al. Propagation Loss of Long-Range Surface Plasmon Polariton Gold Stripe Waveguides in the Thin-Film Limit. Plasmonics 8, 1613–1619 (2013). https://doi.org/10.1007/s11468-013-9578-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9578-y

Keywords

Navigation