Skip to main content
Log in

Photoconductivity of Silver Nanoparticle Ensembles on Quartz Glass (SiO2) Supports Assisted by Localized Surface Plasmon Excitations

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We have studied the conductivity and photoconductivity in silver nanoparticle ensembles on quartz glass substrates. We observed a significant increase of the photoconductivity if the localized surface plasmon resonance in the metal nanoparticles was excited. A detailed analysis of the temperature dependence of the conductivity as well as dependences of the conductivity and photoconductivity on the amount of deposited metal led to the mechanism of the charge transfer in these structures. We found that the primary role in this mechanism is due to defects in the quartz glass structure which act as traps for electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  2. Pillai S, Green MA (2010) Plasmonics for photovoltaic applications. Sol Energy Mater Sol Cells 94:1481–1486

    Article  CAS  Google Scholar 

  3. Köhler M, Fritzsche W (2007) Nanotechnology. An introduction to nanostructuring techniques. WILEY, Weinheim

    Google Scholar 

  4. Abeles B, Sheng P, Coutts MD, Arie Y (1975) Structural and electrical properties of granular metal films. Adv Phys. doi:10.1080/00018737500101431

  5. Ostadal I, Hill RM (2001) Dc conduction of stable ultrathin Pt films below the percolation threshold. Phys Rev B 64:1–4. doi:10.1103/PhysRevB.64.033404

    Article  Google Scholar 

  6. Wenzel T, Bosbach J, Stietz F, Träger F (1999) In situ determination of the shape of supported metal clusters during growth. Surf Sci 432:257–264. doi:10.1016/S0039-6028(99)00546-4

    Article  CAS  Google Scholar 

  7. Hubenthal F, Hendrich C, Vartanyan TA, Träger F (2012) Determination of fundamental morphological parameters of supported nanoparticle ensembles: extracting the functional dependence between nanoparticle shape and size. Plasmonics. doi:10.1007/s11468-012-9408-7

  8. Hubenthal F (2009) Noble metal nanoparticles and their tailoring with laser light. Eur J Phys 30:S49–S61. doi:10.1088/0143-0807/30/4/S05

    Article  CAS  Google Scholar 

  9. Chopra Kasturi L (1969) Thin film phenomena. McGraw-Hill, New York

    Google Scholar 

  10. Gritsenko VA, Ivanov RM, Morokov YN (1995) Electronic structure of amorphous SiO2: experiment and numerical simulation. JETP 81:1208–1216

    Google Scholar 

  11. Afanasev VV, Stesmans A (2007) Internal photoemission at interfaces of high-κ insulators with semiconductors and metals. J Appl Phys 102:1–27. doi:10.1063/1.2799091

    Google Scholar 

  12. Klimov V (2011) Nanoplasmonics. Pan Stanford Publishing, Singapore

    Google Scholar 

  13. Hubenthal F (2011) Noble metal nanoparticles: synthesis and optical properties. In: Andrews DL, Scholes GD, Wiederrecht GP (eds) Comprehensive Nanoscience and Technology, vol 1. Academic Press, Oxford, pp 375–435

    Chapter  Google Scholar 

  14. Wokaun A, Gordon JP, Liao PF (1982) Radiation damping in surface-enhanced Raman scattering. Phys Rev Lett 48:957–960. doi:10.1103/PhysRevLett.48.1574

    Article  CAS  Google Scholar 

  15. Nasyrov KA, Shaimeev SS, Gritsenko VA (2009) Trap-assisted tunneling hole injection in SiO2: experiment and theory. JETP 109:786–793

    Article  CAS  Google Scholar 

  16. Shklovskii BI, Efros AL (1984) Electronic properties of doped semiconductors. Springer, New York

    Book  Google Scholar 

  17. Liu D, Clark SJ, Robertson J (2010) Oxygen vacancy levels and electron transport in Al2O3. Appl Phys Lett 96:032905. doi:10.1063/1.3293440

    Article  Google Scholar 

  18. Spechta M, Städele M, Jakschik S, Schröder U (2004) Transport mechanisms in atomic-layer-deposited Al2O3 dielectrics. Appl Phys Lett 84:16

    Article  Google Scholar 

  19. Vashchenko EV, Gladskikh IA, Vartanyan TA, Przhibelskii SG, Khromov VV (2013) Conductivity and photoconductivity of granular silver films on sapphire substrates. Optical Journal. In print

Download references

Acknowledgments

This work has been supported by RFBR 12–02031922. Elena Vashchenko is grateful to DAAD for a scholarship and the hospitality of Kassel University’s staff. Discussions with V.V. Khromov, S.G. Przhibelskii, and N.B. Leonov are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Vashchenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vashchenko, E.V., Vartanyan, T.A. & Hubenthal, F. Photoconductivity of Silver Nanoparticle Ensembles on Quartz Glass (SiO2) Supports Assisted by Localized Surface Plasmon Excitations. Plasmonics 8, 1265–1271 (2013). https://doi.org/10.1007/s11468-013-9544-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9544-8

Keywords

Navigation