Skip to main content
Log in

Formation of Self-organized Silver Nanocup-Type Structures and Their Plasmonic Absorption

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The present work reports on the formation of extremely low volume, silver nanocup-type structures on the surface by annealing of ultra-thin silver film on quartz in inert environment. Atomic force microscopy studies together with scanning electron microscopy confirmed the formation of Ag nanocup-type structures at the surface. A basic physical model for the formation of nanocups in terms of buckling and Oswald ripening due to surface-induced morphological instability and diffusional mass transport under thermal treatment is demonstrated. Surface plasmon resonance absorptions of nanocup structures are studied and preliminary experiment for observing the surface-enhanced Raman scattering of fullerene C70 molecules has been shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alivisatos AP (2004) Nature Biotechnology 22:47

    Article  CAS  Google Scholar 

  2. Ozbay E (2006) Science 311:189

    Article  CAS  Google Scholar 

  3. Hutter E, Fendler J (2004) Adv Mater 16:1685–1706

    Article  CAS  Google Scholar 

  4. Roh S, Chung T, Lee B (2011) Sensors 11:1565–1588

    Article  Google Scholar 

  5. Huff TB, Tong L, Zhao Y, Hansen MN, Cheng JX, Wei A (2007) Nanomedicine 2:125

    Article  CAS  Google Scholar 

  6. Loo C, Lin A, Hirsch L, Lee MH, Drezek R, West J, Halas NJ (2004) Tech Can Res Treatment 3:33

    CAS  Google Scholar 

  7. Jain P, Huang X, El-Sayed IH, El-Sayed MA (2008) Acc Chem Res 41:1578

    Article  CAS  Google Scholar 

  8. Gong HM, Zhou L, Su XR, Xiao S, Liu SD, Wang QQ (2009) Adv Fun Mat 19:298

    Article  CAS  Google Scholar 

  9. Loo C, Lin A, Hirsch L, Lee MH, Barton J, Halas NJ, West J, Drezek R (2004) Tech Can Res Treatment 3:33

    CAS  Google Scholar 

  10. Fei L, Brandl DW, Urzhumov YA, Wang H, Kundu J, Halas NJ, Aizpurua J, Norlander P (2008) ACS-Nano 2:707

    Article  Google Scholar 

  11. Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y (2011) Chem Rev 111:3669–3712

    Article  CAS  Google Scholar 

  12. Mathur M, Gupta RD, Selvi NR, John NS, Kulkarni GU, Govindarajan R (2007) Phys Rev Lett 98:164502

    Article  Google Scholar 

  13. Bhuvana T, Kulkarni GU (2009) Nanotechnology 20:45504

    Article  CAS  Google Scholar 

  14. Bechelany M, Brodard P, Philippe L, Michler J (2009) Nanotechnology 20:455302

    Article  CAS  Google Scholar 

  15. Norlander P (2009) ACS Nano 3:488–492

    Article  Google Scholar 

  16. Large N, Aizpurua J, Lin VK, Teo SL, Marty R, Tripathy S, Mlayah A (2011) Optics Exp 19:5587–5595

    Article  CAS  Google Scholar 

  17. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Chem Phys Lett 26:163

    Article  CAS  Google Scholar 

  18. J Stern (2006) Silver nanorings: fabrication and optical properties. OPTICS-NNIN REU 106.

  19. He JH, Wu WW, Chueh YL, Hsin CL, Chen LJ, Chou LJ (2005) Appl Phys Lett 87:223101

    Article  Google Scholar 

  20. Jia D, Goonewardene A (2006) Appl Phys Lett 88:053105

    Article  Google Scholar 

  21. Ruffino F, Crupi I, Simone F, Grimaldi MG (2011) Appl Phys Lett 98:23101

    Article  Google Scholar 

  22. Mishra YK, Kabiraj D, Sulania I, Pivin JC, Avasthi DK (2007) J Nanosci Nanotech 7:1878–1881

    Article  CAS  Google Scholar 

  23. Drogat N, Granet R, Sol V, Krausz P (2010) Nanoscale Res Lett 5:566

    Article  CAS  Google Scholar 

  24. Bayati M, Patoka P, Giersig M, Saviniova ER (2010) Langmuir 26:3549–3554

    Article  CAS  Google Scholar 

  25. Bai X, Li X, Zheng L (2010) Langmuir 26:12209–12214

    Article  CAS  Google Scholar 

  26. Zinchenko A, Yoshikawa K, Baiglet D (2005) Adv Mater 17:2820

    Article  CAS  Google Scholar 

  27. Shanahan L, Spencer BJ (2002) Interfaces and Free Boundaries 4:1

    Article  Google Scholar 

  28. Shklyaev OE, Mikis MJ, Voorhees PW (2006) J Mech Phys Solids 54:2111

    Article  CAS  Google Scholar 

  29. Gao H, Ozkan CS, Nix WD, Zimmerman JA, Freund LB (1999) Phil Mag A 79:349

    Article  CAS  Google Scholar 

  30. Aizpurua J, Hanarp P, Sutherland DS, Kall M, Briayant GW, Garica de Abajo FJ (2003) Phys Rev Lett 90:57401

    Article  CAS  Google Scholar 

  31. Kumar G, Tripathi VK (2007) Appl Phys Lett 91:161503

    Article  Google Scholar 

  32. Stiles PL, Dieringer JA, Shah NC, Van Duyne RP (2008) Annu Rev Anal Chem 1:601

    Article  CAS  Google Scholar 

  33. Moskovits M (1985) Rev Mod Phys 57:783–826

    Article  CAS  Google Scholar 

  34. Schettino V, Pagliai M, Cardini G (2002) J Phys Chem A 106:1815–1823

    Article  CAS  Google Scholar 

  35. Kumar G, Singh DB, Tripathi VK (2006) J Phys D Appl Phys 39:4436

    Article  CAS  Google Scholar 

Download references

Acknowledgments

YKM thank the Humboldt Foundation for postdoctoral research grant. YKM, SM, and DKA acknowledge the support from Dr. D.C. Agarwal and Dr. D. Kabiraj (IUAC, New Delhi) during sample preparation. We acknowledge partial support by DFG in framework of the SFB 677 project C1 and C10 and AD 183/5-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. K. Mishra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, Y.K., Adelung, R., Kumar, G. et al. Formation of Self-organized Silver Nanocup-Type Structures and Their Plasmonic Absorption. Plasmonics 8, 811–815 (2013). https://doi.org/10.1007/s11468-013-9477-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9477-2

Keywords

Navigation