Skip to main content
Log in

Near-Field Optical Imaging of a Porous Au Film: Influences of Topographic Artifacts and Surface Plasmons

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this work, near-field scanning optical microscopy is employed to study a porous Au film and the direct observation of topographic artifacts and surface plasmon influences is revealed. Under tip illumination, topographic artifacts are found to be present in a reflection mode optical image but not in a transmission mode image. A simple algorithm is used for filtering the topographic artifacts and extracting a correct near-field optical image approximately. On the other hand, surface plasmon influences are present in both modes. By using three exciting wavelengths of 488, 647.1, and 520.8 nm, it is confirmed that a suitable wavelength should be chosen for avoiding the surface plasmon interference in a near-field optical investigation of morphological or material dielectric contrast. Finally, plasmonic or nonplasmonic regions on the porous Au film can be identified from the observed optical intensity variation in the optical images obtained at incident polarizations of 0°, 90°, and 45°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Pohl DW, Denk W, Lanz M (1984) Optical stethoscopy: image recording with resolution λ/20. Appl Phys Lett 44:651–653

    Article  Google Scholar 

  2. Betzig E, Finn PL, Weiner JS (1992) Combined shear force and near-field scanning optical microscopy. Appl Phys Lett 60:2484–2486

    Article  CAS  Google Scholar 

  3. Reddick RC, Warmack RJ, Ferrell TL (1989) New form of scanning optical microscopy. Phys Rev B 39:767–770

    Article  Google Scholar 

  4. Tsai DP, Lu YY (1998) Tapping-mode tuning fork force sensing for near-field scanning optical microscopy. Appl Phys Lett 73:2724–2726

    Article  CAS  Google Scholar 

  5. Betzig E, Trautman J (1992) Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257:189–195

    Article  CAS  Google Scholar 

  6. Tsai DP, Lin WC (2000) Probing the near fields of the super-resolution near-field optical structure. Appl Phys Lett 77:1413–1415

    Article  CAS  Google Scholar 

  7. Tsai DP, Yang CW, Lin WC, Ho FH, Huang HJ, Chen MY, Tseng TF, Lee CH, Yeh CJ (2000) Dynamic aperture of near-field super resolution structures. Jpn J Appl Phys 39:982–983

    Article  CAS  Google Scholar 

  8. Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57:783–826

    Article  CAS  Google Scholar 

  9. Emory R, Nie S (1997) Near-field surface-enhanced Raman spectroscopy on single silver nanoparticles. Anal Chem 69:2631–2635

    Article  CAS  Google Scholar 

  10. Weeber JC, Krenn JR, Dereux A, Lamprecht B, Lacroute Y, Goudonnet JP (2001) Near-field observation of surface plasmon polariton propagation on thin metal stripes. Phys Rev B 64:045411

    Article  Google Scholar 

  11. Imura K, Nagahara T, Okamoto H (2005) Near-field optical imaging of plasmon modes in gold nanorods. J Chem Phys 122:154701

    Article  Google Scholar 

  12. Hecht B, Sick B, Wild UP, Decker V, Zenobi R, Martin OJF, Pohl DW (2000) Scanning near-field optical microscopy with aperture probes: fundamentals and applications. J Chem Phys 112:7761–7774

    Article  CAS  Google Scholar 

  13. Hecht B, Bielefeldt H, Inouye Y, Pohl DW, Novotny L (1997) Facts and artifacts in near-field optical microscopy. J Appl Phys 81:2492–2498

    Article  CAS  Google Scholar 

  14. Carminati R, Madrazo A, Nieto-Vesperinas M, Greffet J-J (1997) Optical content and resolution of near-field optical images: influence of the operating mode. J Appl Phys 82:501–509

    Article  CAS  Google Scholar 

  15. Gucciardi PG, Colocci M (2001) Different contrast mechanisms induced by topography artifacts in nearfield optical microscopy. Appl Phys Lett 79:1543–1545

    Article  CAS  Google Scholar 

  16. Valle PJ, Greffet J-J, Carminati R (1999) Optical contrast, topographic contrast and artifacts in illumination-mode scanning near-field optical microscopy. J Appl Phys 86:648–656

    Article  CAS  Google Scholar 

  17. Wang X, Fan Z, Tang T (2005) Simulation of topographic images and artifacts in illumination-mode scanning-near-field optical microscopy. J Opt Soc Am A 22:2730–2736

    Article  Google Scholar 

  18. Jordan CE, Stranick SJ, Richter LJ, Cavanagh RR (1999) Removing optical artifacts in near-field scanning optical microscopy by using a three-dimensional scanning mode. J Appl Phys 86:2785–2789

    Article  CAS  Google Scholar 

  19. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, Berlin

    Google Scholar 

  20. Kawata S (2001) Near-field optics and surface plasmon polaritons. Springer, Berlin

    Book  Google Scholar 

  21. Markel VA, George TF (2001) Optics of nanostructured materials. Wiley, New York

    Google Scholar 

  22. Quinten M, Leitner A, Krenn JR, Aussenegg FR (1998) Electromagnetic energy transport via linear chains of silver nanoparticles. Opt Lett 23:1331–1333

    Article  CAS  Google Scholar 

  23. Huang HJ, Yu CP, Chang HC, Chiu KP, Chen HM, Liu RS, Tsai DP (2007) Plasmonic optical properties of a single gold nano-rod. Opt Express 15:7132–7139

    Article  CAS  Google Scholar 

  24. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature (London) 391:667–669

    Article  CAS  Google Scholar 

  25. Park TH, Mirin N, Lassiter JB, Nehl CL, Halas NJ, Nordlander P (2008) Optical properties of a nanosized hole in a thin metallic film. ACS Nano 2:25–32

    Article  CAS  Google Scholar 

  26. Prikulis J, Hanarp P, Olofsson L, Sutherland D, Käll M (2004) Optical spectroscopy of nanometric holes in thin gold films. Nano Lett 4:1003–1007

    Article  CAS  Google Scholar 

  27. Parsons J, Hendry E, Burrows CP, Auguié B, Sambles JR, Barnes WL (2009) Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays. Phys Rev B 79:073412

    Article  Google Scholar 

  28. Liu WC, Tsai DP (2001) Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance. Phys Rev B 65:155423

    Article  Google Scholar 

  29. Ho FH, Lin WY, Chang HH, Lin YH, Liu WC, Tsai DP (2001) Nonlinear optical absorption in the AgOx-type super-resolution near-field structure. Jpn J Appl Phys 40:4101–4102

    Article  CAS  Google Scholar 

  30. Lin WC, Kao TS, Chang HH, Lin YH, Fu YH, Wu CT, Chen KH, Tsai DP (2003) Study of a super-resolution optical structure: polycarbonate/ZnS–SiO2/ZnO/ZnS–SiO2/Ge2Sb2Te5/ZnS–SiO2. Jpn J Appl Phys 42:1029–1030

    Article  CAS  Google Scholar 

  31. Zhou H, Jin L, Xu W (2007) New approach to fabricate nanoporous gold film. Chin Chem Lett 18:365–368

    Article  CAS  Google Scholar 

  32. Devaux E, Ebbesen TW, Weeber JC, Dereux A (2003) Launching and decoupling surface plasmons via micro-gratings. Appl Phys Lett 83:4936–4938

    Article  CAS  Google Scholar 

  33. Eggersa G, Rosenbergera A, Helda N, Münnemanna A, Güntherodta G, Fumagallib P (1998) Scanning near-field magneto-optic microscopy using illuminated fiber tips. Ultramicroscopy 71:249–256

    Article  Google Scholar 

  34. Veerman JA, Otter AM, Kuipers L, van Hulst NF (1998) High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling. Appl Phys Lett 72:3115–3117

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Din Ping Tsai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, YH., Händel, B., Huang, H.J. et al. Near-Field Optical Imaging of a Porous Au Film: Influences of Topographic Artifacts and Surface Plasmons. Plasmonics 8, 377–383 (2013). https://doi.org/10.1007/s11468-012-9401-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9401-1

Keywords

Navigation