Skip to main content
Log in

China’s sizeable and uncertain carbon sink: a perspective from GOSAT

  • Article
  • Atmospheric Science
  • Published:
Chinese Science Bulletin

Abstract

Despite the agreement that China’s terrestrial ecosystems can provide a carbon sink and offset carbon dioxide (CO2) emissions from fossil fuels, the magnitude and spatial distribution of the sink remain uncertain. Accurate quantification of the carbon sequestration capacity of China’s terrestrial ecosystems has profound scientific and policy implications. Here, we report on the magnitude and patterns of China’s terrestrial carbon sink using the global monthly CO2 flux data product from the Greenhouse gases Observing SATellite (GOSAT), the world’s first satellite dedicated to global greenhouse gas observation. We use the first year’s data from GOSAT (June 2009–May 2010) that are currently available to assess China’s biospheric carbon fluxes. Our results show that China’s terrestrial ecosystems provide a carbon sink of −0.21 Pg C a−1. The consumption of fossil fuels in China leads to carbon dioxide emissions of 1.90 Pg C a−1 into the atmosphere, approximately 11.1 % of which is offset by China’s terrestrial ecosystems. China’s terrestrial ecosystems play a significant role in offsetting fossil fuel emissions and slowing down the buildup of CO2 in the atmosphere. Our analysis based on GOSAT data offers a new perspective on the magnitude and distribution of China’s carbon sink. Our results show that China’s terrestrial ecosystems provide a sizeable and uncertain carbon sink, and further research is needed to reduce the uncertainty in its magnitude and distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhou GS, Zhang XS (1996) Study on NPP of natural vegetation in China under global climate change. Acta Phytoecol Sin 20:11–19 (in Chinese)

    Google Scholar 

  2. Fang JY, Chen AP, Peng CH et al (2001) Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292:2320–2322

    Article  Google Scholar 

  3. Piao SL, Fang JY, Ciais P et al (2009) The carbon balance of terrestrial ecosystems in China. Nature 458:1009–1013

    Article  Google Scholar 

  4. Fang JY, Guo ZD, Piao SL et al (2007) Terrestrial vegetation carbon sinks in China, 1981–2000. Sci China Ser D Earth Sci 50:1341–1350

    Article  Google Scholar 

  5. IPCC (2007) Climate change 2007: impacts, adaptation, and vulnerability, contribution of Working Group II to the Fourth Assessment Report of the Inter-government Panel on Climate Change. Cambridge University Press, Cambridge, pp 976

  6. Keeling CD, Bacastow RB, Bainbridge AE et al (1976) Atmospheric carbon dioxide variations at Mauna Loa observatory, Hawaii. Tellus 28:538–551

    Article  Google Scholar 

  7. Yoshida Y, Ota Y, Eguchi N et al (2011) Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse Gases Observing Satellite. Meas Tech 4:717–734

    Article  Google Scholar 

  8. Lv DR, Wang PC, Qiu JH et al (2003) An overview on the research progress of atmospheric remote sensing and satellite meteorology in China. Chin J Atmos Sci 27:552–566 (in Chinese)

    Google Scholar 

  9. Buchwitz M, Schneising O, Burrows JP et al (2007) First direct observation of the atmospheric CO2 year-to-year increase from space. Atmos Chem Phys 7:4249–4256

    Article  Google Scholar 

  10. Chevallier F, Maksyutov S, Bousquet P et al (2009) On the accuracy of the CO2 surface fluxes to be estimated from the GOSAT observations. Geophys Res Lett 36:L19807

    Article  Google Scholar 

  11. Kadygrov N, Maksyutov S, Eguchi N et al (2009) Role of simulated GOSAT total column CO2 observations in surface CO2 flux uncertainty reduction. J Geophys Res 114:D21208

    Article  Google Scholar 

  12. Liu Y, Lv DR, Chen HB et al (2011) Advances in technologies and methods for satellite remote sensing of atmospheric CO2. Remote Sens Technol Appl 26:247–254 (in Chinese)

    Google Scholar 

  13. Buchwitz M, de Beek R, Noël S et al (2006) Atmospheric carbon gases retrieved from SCIAMACHY by WFM-DOAS: version 0.5 CO and CH4 and impact of calibration improvements on CO2 retrieval. Atmos Chem Phys 6:2727–2751

    Google Scholar 

  14. Qi J, Zhang P, Zhang WJ et al (2008) DOAS Inversion sensitivity test of NO2 based on SCIATRAN model. Acta Meteorol Sin 66:396–404 (in Chinese)

    Google Scholar 

  15. Zheng YQ (2011) Development status of remote sensing instruments for greenhouse gases. Chin Opt 4:449–560 (in Chinese)

    Google Scholar 

  16. Miller CE, Crisp D, Decola PL et al (2007) Precision requirements for space-based \({\text{X}}_{{{\text{CO}}_{{\text{2}}} }} \) data. J Geophys Res 112:D10314

    Article  Google Scholar 

  17. Frankenberg C, Fisher JB, Worden J et al (2011) New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity. Geophys Res Lett 38:L17706

    Article  Google Scholar 

  18. Parker R, Boesch H, Cogan A et al (2011) Methane observations from the Greenhouse Gases Observing SATellite: comparison to ground-based TCCON data and model calculations. Geophys Res Lett 38:L15807

    Article  Google Scholar 

  19. Wunch D, Wennberg PO, Toon GC et al (2011) A method for evaluating bias in global measurements of CO2 total columns from space. Atmos Chem Phys 11:12317–12337

    Article  Google Scholar 

  20. Cogan A, Boesch H, Parker R et al (2012) Atmospheric carbon dioxide retrieved from the Greenhouse gases Observing SATellite (GOSAT): comparison with ground-based TCCON observations and GEOS-Chem model calculations. J Geophys Res 117:D21301

    Google Scholar 

  21. Yoshida Y, Kikuchi N, Morino I et al (2013) Improvement of the retrieval algorithm for GOSAT SWIR \({\text{X}}_{{{\text{CO}}_{{\text{2}}} }} \) and XCH4 and their validation using TCCON data. Atmos Meas Tech 6:1533–1547

    Article  Google Scholar 

  22. Yokota T, Yoshida Y, Eguchi N et al (2009) Global concentrations of CO2 and CH4 retrieved from GOSAT: first preliminary results. Sola 5:160–163

    Article  Google Scholar 

  23. Kort EA, Frankenberg C, Miller CE et al (2012) Space-based observations of megacity carbon dioxide. Geophys Res Lett 39:L17806

    Article  Google Scholar 

  24. Yates EL, Schiro K, Lowenstein M et al (2011) Carbon dioxide and methane at a desert site—a case study at Railroad Valley playa, Nevada, USA. Atmosphere 2:702–714

    Google Scholar 

  25. Takagi H, Saeki T, Oda T et al (2011) On the benefit of GOSAT observations to the estimation of regional CO2 fluxes. Sola 7:161–164

    Article  Google Scholar 

  26. Kuze A, Suto H, Nakajima M et al (2009) Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl Opt 48:6716–6733

    Article  Google Scholar 

  27. NIES Gosat Project (2011) GOSAT/IBUKI data users handbook, 1st edn. NIES, Ibaraki

    Google Scholar 

  28. NIES Gosat Project (2012) GOSAT Pamphlet, 6th edn. NIES, Ibaraki

    Google Scholar 

  29. Morino I, Uchino O, Inoue M et al (2011) Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra. Atmos Meas Tech 4:1061–1076

    Article  Google Scholar 

  30. Zeng ZC, Lei LP, Guo LJ et al (2013) Incorporating temporal variability to improve geostatistical analysis of satellite-observed CO2 in China. Chin Sci Bull 58:1948–1954

    Article  Google Scholar 

  31. Maksyutov S, Patra PK, Onishi R et al (2008) NIES/FRCGC global atmospheric tracer transport model: description, validation, and surface sources and sinks inversion. J Earth Simul 9:3–18

    Google Scholar 

  32. Maksyutov S, Takagi H, Valsala VK et al (2013) Regional CO2 flux estimates for 2009–2010 based on GOSAT and ground-based CO2 observations. Atmos Chem Phys 13:9351–9373

    Article  Google Scholar 

  33. NIES Gosat Project (2012) On the public release of carbon dioxide flux estimates based on the observational data by the Greenhouse gases Observing SATellite “IBUKI”(GOSAT). NIES, Ibaraki

    Google Scholar 

  34. Tian H, Melillo J, Lu C (2011) China’s terrestrial carbon balance: contributions from multiple global change factors. Glob Biogeochem Cycles 25:GB1007

    Google Scholar 

  35. Liu S, Gong P (2012) Change of surface cover greenness in China between 2000 and 2010. Chin Sci Bull 57:2835–2845

    Article  Google Scholar 

  36. Cao M, Prince SD, Li K et al (2003) Response of terrestrial carbon uptake to climate interannual variability in China. Glob Change Biol 9:536–546

    Article  Google Scholar 

  37. CC IP (2000) Land use, land-use change, and forestry. Cambridge University Press, Cambridge, p 375

    Google Scholar 

  38. Prentice I, Farquhar GD, Fasham M et al (ed) (2001) The carbon cycle and atmospheric carbon dioxide. In: IPCC. Climate Change 2001: The Scientific Basis. Cambridge University Press, Cambridge, pp 185–237

  39. Cramer W, Bondeau A, Woodward FI et al (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Change Biol 7:357–373

    Article  Google Scholar 

  40. Pacala SW, Hurtt GC, Baker D et al (2001) Consistent land-and atmosphere-based US carbon sink estimates. Science 292:2316–2320

    Article  Google Scholar 

  41. Gong P, Wang J, Yu L et al (2013) Finer resolution observation and monitoring of global land cover: first mapping results with LANDSAT TM and ETM + data. Int J Remote Sens 34:2607–2654

    Article  Google Scholar 

  42. Janssens IA, Freibauer A, Ciais P et al (2003) Europe’s terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science 300:1538–1542

    Article  Google Scholar 

  43. Lü Y, Fu B, Feng X et al (2012) A policy-driven large scale ecological restoration: quantifying ecosystem services changes in the Loess Plateau of China. PLoS One 7:e31782

    Google Scholar 

  44. Zhang L, Xiao J, Li J et al (2012) The 2010 spring drought reduced primary productivity in southwestern China. Environ Res Lett 7:45706

    Article  Google Scholar 

  45. Myneni RB, Dong J, Tucker CJ et al (2001) A large carbon sink in the woody biomass of northern forests. Proc Natl Acad Sci USA 98:14784–14789

    Article  Google Scholar 

  46. CC IP (2007) Climate change 2007: The physical science basis, contribution of Working Group I to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge

    Google Scholar 

  47. Houghton RA (2007) Balancing the global carbon budget. Annu Rev Earth Planet Sci 35:313–347

    Article  Google Scholar 

  48. Pan Y, Birdsey RA, Fang J et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  Google Scholar 

  49. Xiao J, Zhuang Q, Law BE et al (2011) Assessing net ecosystem carbon exchange of U.S. terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations. Agric Forest Meteorol 151:60–69

    Article  Google Scholar 

  50. Le Quéré C, Raupach MR, Canadell JG et al (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836

    Article  Google Scholar 

  51. Zhang G, Li J, Li X et al (2010) Impact of anthropogenic emissions and open biomass burning on regional carbonaceous aerosols in South China. Environ Pollut 158:3392–3400

    Article  Google Scholar 

  52. Fu PQ, Kawamura K, Chen J et al (2012) Diurnal variations of organic molecular tracers and stable carbon isotopic composition in atmospheric aerosols over Mt. Tai in the North China Plain: an influence of biomass burning. Atmos Chem Phys 12:8359–8375

    Article  Google Scholar 

  53. Crisp D, Atlas RM, Breon FM et al (2004) The orbiting carbon observatory (OCO) mission. Adv Space Res 34:700–709

    Article  Google Scholar 

  54. Hammerling DM, Michalak AM, Kawa SR (2012) Mapping of CO2 at high spatiotemporal resolution using satellite observations: global distributions from OCO-2. J Geophys Res 117:D06306

    Google Scholar 

  55. Liu Y, Yang DX, Cai ZN (2013) A retrieval algorithm for TanSat \( ({\text{X}}_{{{\text{CO}}_{{\text{2}}} }}) \) observation: retrieval experiments using GOSAT data. Chin Sci Bull 58:1520–1523

    Article  Google Scholar 

  56. Buchwitz M, Reuter M, Bovensmann H et al (2013) Carbon Monitoring Satellite (CarbonSat): assessment of atmospheric CO2 and CH4 retrieval errors by error parameterization. Atmos Meas Tech 6:3477–3500

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Strategic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues of the Chinese Academy of Sciences (XDA05040401) and the National High-Tech R&D Program of China (2013AA122002). Jingfeng Xiao was supported by the National Natural Science Foundation through the MacroSystems Biology Program (1065777). We thank the NIES GOSAT Project for providing the GOSAT data. We also thank the anonymous reviewers for their constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhang.

Additional information

SPECIAL TOPIC: Greenhouse Gas Observation From Space: Theory and Application

About this article

Cite this article

Zhang, L., Xiao, J., Li, L. et al. China’s sizeable and uncertain carbon sink: a perspective from GOSAT. Chin. Sci. Bull. 59, 1547–1555 (2014). https://doi.org/10.1007/s11434-014-0260-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0260-3

Keywords

Navigation