Skip to main content
Log in

Pairing superfluidity in spin-orbit coupled ultracold Fermi gases

  • Invited Review
  • Optics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We review some recent progresses on the study of ultracold Fermi gases with synthetic spin-orbit coupling. In particular, we focus on the pairing superfluidity in these systems at zero temperature. Recent studies have shown that different forms of spin-orbit coupling in various spatial dimensions can lead to a wealth of novel pairing superfluidity. A common theme of these variations is the emergence of new pairing mechanisms which are direct results of spin-orbit-coupling-modified single-particle dispersion spectra. As different configurations can give rise to single-particle dispersion spectra with drastic differences in symmetry, spin dependence and low-energy density of states, spin-orbit coupling is potentially a powerful tool of quantum control, which, when combined with other available control schemes in ultracold atomic gases, will enable us to engineer novel states of matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin Y J, Compton R L, Perry A R, et al. Bose-Einstein condenstate in a uniform light-induced vector potential. Phys Rev Lett, 2009, 102: 130401

    Article  ADS  Google Scholar 

  2. Lin Y J, Compton R L, Jiménez-García K, et al. Synthetic magnetic fields for ultracold neutral atoms. Nature, 2009, 462: 628–632

    Article  ADS  Google Scholar 

  3. Lin Y J, Compton R L, Jiménez-García K, et al. A synthetic electric force acting on neutral atoms. Nat Phys, 2011, 7: 531–534

    Article  Google Scholar 

  4. Lin Y J, Jiménez-García K, Spielman I B. Spin-orbit-coupled Bose-Einstein condensates. Nature, 2011, 471: 83–86

    Article  ADS  Google Scholar 

  5. Wang P, Yu Z Q, Fu Z, et al. Spin-orbit coupled degenerate Fermi gases. Phys Rev Lett, 2012, 109: 095301

    Article  ADS  Google Scholar 

  6. Cheuk L W, Sommer A T, Hadzibabic Z, et al. Spin-injection spectroscopy of a spin-orbit coupled Fermi gas. Phys Rev Lett, 2012, 109: 095302

    Article  ADS  Google Scholar 

  7. Zhang J Y, Ji S C, Chen Z, et al. Collective dipole oscillations of a spinorbit coupled Bose-Einstein condensate. Phys Rev Lett, 2012, 109: 115301

    Article  ADS  Google Scholar 

  8. Qu C, Hamner C, Gong M, et al. Observation of Zitterbewegung in a spin-orbit-coupled Bose-Einstein condensate. Phys Rev A, 2013, 88: 021604

    Article  ADS  Google Scholar 

  9. Williams R A, Beeler M C, LeBlanc L J, et al. Raman-induced interactions in a single-component Fermi gas near an s-wave Feshbach resonance. Phys Rev Lett, 2013, 111: 095301

    Article  ADS  Google Scholar 

  10. Fu Z, Huang L, Meng Z, et al. Production of Feshbach molecules induced by spin-orbit coupling in Fermi gases. Nat Phys, 2014, 10: 110–115

    Article  Google Scholar 

  11. Ji S C, Zhang J Y, Zhang L, et al. Experimental determination of the finite-temperature phase diagram of a spin-orbit coupled Bose gas. Nat Phys, 2014, 10: 314–320

    Article  Google Scholar 

  12. Olson A J, Wang S J, Niffenegger R J, et al. Tunable Landau-Zener transitions in a spin-orbit-coupled Bose-Einstein condensate. Phys Rev A, 2014, 90: 013616

    Article  ADS  Google Scholar 

  13. Hasan M Z, Kane C L. Topological insulators. Rev Mod Phys, 2010, 82: 3045–3067

    Article  ADS  Google Scholar 

  14. Qi X L, Zhang S C. Topological insulators and superconductors. Rev Mod Phys, 2011, 83: 1057

    Article  ADS  Google Scholar 

  15. Alicea J. New directions in the pursuit of Majorana fermions in solid state systems. Rep Prog Phys, 2012, 75: 076501

    Article  ADS  Google Scholar 

  16. Campbell D L, Juzeliunas G, Spielman I B. Realistic Rashba and Dresselhaus spin-orbit coupling for neutral atoms. Phys Rev A, 2011, 84: 025602

    Article  ADS  Google Scholar 

  17. Sau J D, Sensarma R, Powell S, et al. Chiral Rashba spin textures in ultracold Fermi gases. Phys Rev B, 2011, 83: 140510

    Article  ADS  Google Scholar 

  18. Xu Z F, You L. Dynamical generation of arbitrary spin-orbit couplings for neutral atoms. Phys Rev A, 2012, 85: 043605

    Article  ADS  Google Scholar 

  19. Liu X J, Law K T, Ng T K. Realizations of 2D spin-orbit interaction and exotic topological orders in cold atoms. Phys Rev Lett, 2014, 112: 086401

    Article  ADS  Google Scholar 

  20. Anderson B M, Spielman I B, Juzeliunas G. Magnetically generated spin-orbit coupling for ultracold atoms. Phys Rev Lett, 2013, 111: 125301

    Article  ADS  Google Scholar 

  21. Xu Z F, You L, Ueda M. Atomic spin-orbit coupling synthesized with magnetic-field-gradient pulses. Phys Rev A, 2013, 87: 063634

    Article  ADS  Google Scholar 

  22. Li Y, Zhou X, Wu C. Two- and three-dimensional topological insulators with isotropic and parity-breaking Landau levels. Phys Rev A, 2012, 85: 125122

    ADS  Google Scholar 

  23. Anderson B M, Juzeliunas G, Galitski V M, et al. Synthetic 3D spinorbit coupling. Phys Rev Lett, 2012, 108: 235301

    Article  ADS  Google Scholar 

  24. Zhang C, Tewari S, Lutchyn R M, et al. p x+ip y superfluid from s-wave interactions of fermionic cold atoms. Phys Rev Lett, 2008, 101: 160401

    Article  ADS  Google Scholar 

  25. Sato M, Takahashi Y, Fujimoto S. Non-Abelian topological order in s-wave superfluids of ultracold fermionic atoms. Phys Rev Lett, 2009, 103: 020401

    Article  ADS  Google Scholar 

  26. Gong M, Tewari S, Zhang C. BCS-BEC crossover and topological phase transition in 3D spin-orbit coupled degenerate Fermi gases. Phys Rev Lett, 2011, 107: 195303

    Article  ADS  Google Scholar 

  27. Dell’Anna L, Mazzarella G, Salasnich L. Condensate fraction of a resonant Fermi gas with spin-orbit coupling in three and two dimensions. Phys Rev A, 2011, 84: 033633

    Article  ADS  Google Scholar 

  28. Zhou J, Zhang W, Yi W. Topological superfluid in a trapped twodimensional polarized Fermi gas with spin-orbit coupling. Phys Rev A, 2011, 84: 063603

    Article  ADS  Google Scholar 

  29. Gong M, Chen G, Jia S, et al. Searching for Majorana fermions in 2D spin-orbit coupled Fermi superfluids at finite temperature. Phys Rev Lett, 2012, 109: 105302

    Article  ADS  Google Scholar 

  30. Liao R, Yi-Xiang Y, Liu W M. Tuning the tricritical point with spin-orbit coupling in polarized fermionic condensates. Phys Rev Lett, 2012, 108: 080406

    Article  ADS  Google Scholar 

  31. He L, Huang X G. BCS-BEC crossover in 2D fermi gases with Rashba spin-orbit coupling. Phys Rev Lett, 2012, 108: 145302

    Article  ADS  Google Scholar 

  32. Chen C. Inhomogeneous topological superfluidity in one-dimensional spin-orbit-coupled Fermi gases. Phys Rev Lett, 2013, 111: 235302

    Article  ADS  Google Scholar 

  33. Qu C, Zheng Z, Gong M, et al. Topological superfluid with finite momentum pairing and Majorana fermions. Nat Comm, 2013, 4: 2710

    ADS  Google Scholar 

  34. Zhang W, Yi W. Topological Fulde-Ferrell-Larkin-Ovchinnikov states in spin-orbit-coupled Fermi gases. Nat Commun, 2013, 4: 2711–2716

    ADS  Google Scholar 

  35. Liu X J, Hu H. Topological Fulde-Ferrell superfluid in spin-orbitcoupled atomic Fermi gases. Phys Rev A, 2013, 88: 023622

    Article  ADS  Google Scholar 

  36. Xu Y, Chu R L, Zhang C. Anisotropic Weyl fermions from the quasiparticle excitation spectrum of a 3D Fulde-Ferrell superfluid. Phys Rev Lett, 2014, 112: 136402

    Article  ADS  Google Scholar 

  37. Cao Y, Zou S H, Liu X J, et al. Gaples topological Fulde-Ferrell super-fluidity in spin-orbit coupled Fermi gases. arXiv:1402.6832

  38. Hu H, Dong L, Cao Y, et al. Gapless topological Fulde-Ferrell super-fluidity induced by in-plane Zeeman field. arXiv:1404.2442

  39. Iskin M, Subasi A L. Stability of spin-orbit couple Fermi gases with population imbalance. Phys Rev Lett, 2011, 107: 050402

    Article  ADS  Google Scholar 

  40. Yi W, Guo G C. Phase separation in a polarized Fermi gas with spinorbit coupling. Phys Rev A, 2011, 84: 031608

    Article  ADS  Google Scholar 

  41. Han L, Sá de Melo C A R. Evolution from BCS to BEC superfluidity in the presence of spin-orbit coupling. Phys Rev A, 2012, 85: 011606

    Article  ADS  Google Scholar 

  42. Yi W, Zhang W. Molecule and polaron in a highly polarized twodimensional Fermi gas with spin-orbit coupling. Phys Rev Lett, 2012, 109: 140402

    Article  ADS  Google Scholar 

  43. Yang X, Wan S. Phase diagram of a uniform two-dimensional Fermi gas with spin-orbit coupling. Phys Rev A, 2012, 85: 023633

    Article  ADS  Google Scholar 

  44. Iskin M, Subasi A L. Topological superfluid phases of an atomic Fermi gas with in- and out-of-plane Zeeman fields and equal Rashba-Dresselhaus spin-orbit coupling. Phys Rev A, 2013, 87: 063627

    Article  ADS  Google Scholar 

  45. Dong L, Jiang L, Pu H. Fulde-Ferrell pairing instability in spin-orbit coupled Fermi gas. New J Phys, 2013, 15: 075014

    Article  Google Scholar 

  46. Zhou X F, Guo G C, Zhang W, et al. Exotic pairing states in a Fermi gas with three-dimensional spin-orbit coupling. Phys Rev A, 2013, 87: 063606

    Article  ADS  Google Scholar 

  47. Wu F, Guo G C, Zhang W, et al. Unconventional superfluid in a twodimensional Fermi gas with anisotropic spin-orbit coupling and Zeeman fields. Phys Rev Lett, 2013, 110: 110401

    Article  ADS  Google Scholar 

  48. Wu F, Guo G C, Zhang W, et al. Unconventional Fulde-Ferrell-Larkin-Ovchinnikov pairing states in a Fermi gas with spin-orbit coupling. Phys Rev A, 2013, 88: 043614

    Article  ADS  Google Scholar 

  49. Zhou L, Cui X, Yi W. Three-component ultracold Fermi gases with spin-orbit coupling. Phys Rev Lett, 2014, 112: 195301

    Article  ADS  Google Scholar 

  50. Shi Z Y, Cui X, Zhai H. Universal trimers induced by spin-orbit coupling in ultracold Fermi gases. Phys Rev Lett, 2014, 112: 013201

    Article  ADS  Google Scholar 

  51. Cui X, Yi W. Universal Borromean Binding in spin-orbit coupled ultracold Fermi gases. Phys Rev X, 2014, 4: 031026

    Google Scholar 

  52. Wang C, Gao C, Jian C, et al. Spin-orbit coupled spinor Bose-Einstein condensates. Phys Rev Lett, 2010, 105: 160403

    Article  ADS  Google Scholar 

  53. Wu C, Mondragon-Shem I, Zhou X F. Unconventional Bose-Einstein condensations from spin-orbit coupling. Chin Phys Lett, 2011, 28: 097102

    Article  ADS  Google Scholar 

  54. Vyasanakere J P, Zhang S, Shenoy V B. BCS-BEC crossover induced by a synthetic non-Abelian gauge field. Phys Rev B, 2011, 84: 014512

    Article  ADS  Google Scholar 

  55. Yu Z Q, Zhai H. Spin-orbit coupled Fermi gases across a Feshbach resonance. Phys Rev Lett, 2011, 107: 195305

    Article  ADS  Google Scholar 

  56. Dalibard J, Gerbier F, Juzeliunas G, et al. Artificial gauge potentials for neutral atoms. Rev Mod Phys, 2011, 83: 1523

    Article  ADS  Google Scholar 

  57. Liu X J, Borunda M F, Liu X, et al. Effect of induced spin-orbit coupling for atoms via laser fields. Phys Rev Lett, 2009, 102: 046402

    Article  ADS  Google Scholar 

  58. Spielman I B. Raman processes and effective gauge potentials. Phys Rev A, 2009, 79: 063613

    Article  ADS  Google Scholar 

  59. Li Y, Zhou X F, Wu C. 3D quaternionic condensation and spin textures with Hopf invariants from synthetic spin-orbit coupling. arXiv:1205.2162

  60. Goldman N, Gerbier F, Lewenstein M. Realizing non-Abelian gauge potentials in optical square lattices: an application to atomic Chern insulators. J Phys B, 2013, 46: 134010

    Article  ADS  Google Scholar 

  61. Goldman N, Juzeliunas G, Öhberg P, et al. Light-induced gauge fields for ultracold atoms. arXiv:1308.6533

  62. Chen J, Hu H, Gao X. Three-component topological superfluid in onedimensional Fermi gases with spin-orbit coupling. arXiv:1405.0709

  63. Ketterle W, Zwierlein M W. Making, probing and udnerstanding ultracold Fermi gases. Ultracold Fermi Gases. In: Proceedings of the International School of Physics “Enrico Fermi”, Course CLXIV, Amsterdam: IOS Press, 2008

    Google Scholar 

  64. Chin C, Grimm R, Julienne P, et al. Feshbach resonances in ultracold gases. Rev Mod Phys, 2010, 82: 1225–1286

    Article  ADS  Google Scholar 

  65. Fuld P, Ferrell R A. Superconductivity in a strong spin-exchange field. Phys Rev, 1964, 135: A550–A563; Larkin A I, Ovchinnikov Y N. Inhomogeneous state of superconductors. Sov Phys JETP, 1965, 20: 762–765

    Article  ADS  Google Scholar 

  66. Nayak C, Simon S H, Stern A, et al. Non-Abelian anyons and topological quantum computation. Rev Mod Phys, 2008, 80: 1083

    Article  ADS  MATH  MathSciNet  Google Scholar 

  67. Michaeli K, Potter A C, Lee P A. Superconducting and ferromagnetic phases in SrTiO3/LaAlO3 oxide interface structure: Possibility of finite momentum pairing. Phys Rev Lett, 2012, 108: 117003

    Article  ADS  Google Scholar 

  68. Zheng Z, Gong M, Zou X, et al. Route to observable Fulde-Ferrell-Larkin-Ovchinnikov phases in three-dimensional spin-orbit-coupled degenerate Fermi gases. Phys Rev A, 2013, 87: 031602

    Article  ADS  Google Scholar 

  69. Efimov V. Weakly-bound states of three resonantly interacting particles. Yad Fiz, 1970, 12: 1080

    Google Scholar 

  70. Zhukov MV, Danilin B V, Fedorov D V, et al. Bound state properties of Borromean halo nuclei: 6He and 11Li. Phys Rep, 1993, 231: 151–199

    Article  ADS  Google Scholar 

  71. Braaten E, Hammer H W. Universality in few-body systems with large scattering length. Phys Rep, 2006, 428: 259–392

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Yi, Wei Zhang or XiaoLing Cui.

Additional information

Recommended by ZHANG Jing (Associate Editor)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, W., Zhang, W. & Cui, X. Pairing superfluidity in spin-orbit coupled ultracold Fermi gases. Sci. China Phys. Mech. Astron. 58, 1–11 (2015). https://doi.org/10.1007/s11433-014-5609-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5609-8

Keywords

Navigation