Skip to main content
Log in

Image denoising and deblurring: non-convex regularization, inverse diffusion and shock filter

  • Research Papers
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

A large number of applications in image processing and computer vision depend on image quality. In this paper, main concerns are image denoising and deblurring simultaneously in a restoration task by three types of methodologies: non-convex regularization, inverse diffusion and shock filter. We discuss their relations in the context of image deblurring: the inverse diffusion implied by the non-convex regularization, and the superior ability of deblurring edge of the shock filter to that of the inverse diffusion, both in 1D and 2D cases. Finally, we propose a region-based adaptive anisotropic diffusion with shock filter method, which shows advantages of deblurring edges, denoising and smoothing contours in experiments, compared with some related methods. Therein an idea of “divide and rule” is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang Y D, Wu L N. Improved image filter based on SPCNN. Sci China Ser F-Inf Sci, 2008, 51: 2115–2125

    Article  Google Scholar 

  2. Gonzalez R C, Woods R E. Digital Image Processing. 2nd ed. New York: Prentice-Hall, 2004

    Google Scholar 

  3. Tikhonov A N, Arsenin V Y. Solutions of Ill-posed Problems. Washington DC: Winston & Sons Incorporation, 1977

    MATH  Google Scholar 

  4. Chan T F, Shen J. Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods. Philadelphia: the Society for Industrial and Applied Mathematics, 2005

    MATH  Google Scholar 

  5. Geman S, Geman D. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans Patt Anal Mach Intell, 1984, 6: 721–741

    Article  MATH  Google Scholar 

  6. Mumford D, Shah J. Boundary detection by minimizing functionals. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 1985. 22–26

  7. Blake A, Zisserman A. Visual Reconstruction. Cambridge: MIT Press, 1987

    Google Scholar 

  8. Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Phys D, 1992, 60: 259–268

    Article  MATH  Google Scholar 

  9. Liu F. Diffusion filtering in image processing based on wavelet transform. Sci China Ser F-Inf Sci, 2006, 49: 494–503

    Article  MATH  Google Scholar 

  10. Yang J Y, Peng Y G, Xu W L, et al. Ways to sparse representation: an overview. Sci China Ser F-Inf Sci, 2009, 52: 695–703

    Article  MathSciNet  MATH  Google Scholar 

  11. Lysaker M, Lundervold A, Tai X C. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans Image Process, 2003, 12: 1579–1590

    Article  Google Scholar 

  12. Lysaker M, Tai X C. Iterative image restoration combining total variation minimization and a second-order functional. Int J Comput Vision, 2006, 66: 5–18

    Article  Google Scholar 

  13. Rice J R, White J S. Norms for smoothing and estimation. SIAM Review, 1964, 6: 243–256

    Article  MathSciNet  MATH  Google Scholar 

  14. Ekblom H, Henriksson S. L p-criteria for the estimation of location parameters. SIAM J Appl Math, 1969, 17: 1130–1141

    Article  MathSciNet  MATH  Google Scholar 

  15. Charbonnier P, Blanc-Feraud L, Aubert G, et al. Deterministic edge-preserving regularization in computed imaging. IEEE Trans Image Process, 1997, 6: 298–311

    Article  Google Scholar 

  16. Nikolova M. Functionals for signal and image reconstruction: properties of their minimizers and applications. Technical report, Centre de Mathématiques et de Leurs Applications (CMLA), France, 2006

    Google Scholar 

  17. Scherzer O, Grasmair M, Grossauer H, et al. Variational Methods in Imaging. New York: Springer-Verlag, 2009

    MATH  Google Scholar 

  18. Elmoataz A, Lezoray O, Bougleux S. Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing. IEEE Trans Image Process, 2008, 17: 1047–1060

    Article  MathSciNet  Google Scholar 

  19. Bredies K, Lorenz D A. Minimization of non-smooth, non-convex functionals by iterative thresholding. available at “http://www.tu-braunschweig.de/iaa/personal/lorenz/publikationen/index.htm/

  20. Kovasznay L S G, Joseph H M. Image processing. Proce Instit Radio Eng, 1955, 43: 560–570

    Google Scholar 

  21. Gabor D. Information theory in electron microscopy. Lab Invest, 1965, 14: 801–807

    Google Scholar 

  22. Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Patt Anal Mach Intell, 1990, 12: 629–639

    Article  Google Scholar 

  23. Pollak I, Willsky A S, Krim H. Image segmentation and edge enhancement with stabilized inverse diffusion equations. IEEE Trans Image Process, 2000, 9: 256–266

    Article  MATH  Google Scholar 

  24. BreuBrox T, Sonar T, et al. Stabilised nonlinear inverse diffusion for approximating hyperbolic pdes. Lect Notes Comput Sci, 2005, 3459: 536–547

    Article  Google Scholar 

  25. Osher S, Rudin L I. Feature-oriented image enhancement using shock filters. SIAM J Num Anal, 1990, 27: 919–940

    Article  MATH  Google Scholar 

  26. Alvarez L, Mazorra L. Signal and image restoration using shock filters and anisotropic diffusion. SIAM J Num Anal, 1994, 31: 590–605

    Article  MathSciNet  MATH  Google Scholar 

  27. Weickert J. Coherence-enhancing shock filters. Lect Notes Comput Sci, 2003, 2781: 1–8

    Article  Google Scholar 

  28. Gilboa G, Sochen N, Zeevi Y Y. Image enhancement and denoising by complex diffusion processes. IEEE Trans Patt Anal Mach Intell, 2004, 26: 1020–1036

    Article  Google Scholar 

  29. Fu S, Ruan Q, Wang W, et al. A feature-dependent fuzzy bidirectional flow for adaptive image sharpening. Neurocomputing, 2007, 70: 883–895

    Google Scholar 

  30. Fu S, Ruan Q, Mu C, et al. Feature preserving coupled bidirectional flow for edge sharpening and image enhancement. Chin J Comput, 2008, 31: 529–535

    Article  MathSciNet  Google Scholar 

  31. Scherzer O, Weickert J. Relations between regularization and diffusion filtering. J Math Imag Vision, 2000, 12: 43–63

    Article  MathSciNet  MATH  Google Scholar 

  32. Brox T, Welk M, Steidl G, et al. Equivalence results for tv diffusion and tv regularisation. Lect Notes Comput Sci, 2003, 2695: 86–100

    Article  Google Scholar 

  33. Steidl G, Weickert J, Brox T, et al. On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and sides. SIAM J Num Anal, 2004, 42: 686–713

    Article  MathSciNet  MATH  Google Scholar 

  34. Sidky E Y C, Pan R X. Image reconstruction from few views by non-convex optimization. In: IEEE Nuclear Science Symposium Conference Record, Honolulu, USA, 2007. 3526–3530

  35. Keeling S L, Stollberger R. Nonlinear anisotropic diffusion filtering for multiscale edge enhancement. Inverse Probl, 2002, 18: 175–190

    Article  MathSciNet  MATH  Google Scholar 

  36. Aubert G, Kornprobst P. Mathematical problems in image processing: Partial differential equations and the calculus of variations. In: Applied Mathematical Sciences. Vol. 47. New York: Springer-Verlag, 2001

    Google Scholar 

  37. Leu J G. Edge sharpening through ramp width reduction. Image Vision Comput, 2000, 18: 501–514

    Article  Google Scholar 

  38. Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process, 2004, 13: 600–612

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShuJun Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, S., Zhang, C. & Tai, X. Image denoising and deblurring: non-convex regularization, inverse diffusion and shock filter. Sci. China Inf. Sci. 54, 1184–1198 (2011). https://doi.org/10.1007/s11432-011-4239-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4239-2

Keywords

Navigation