Skip to main content
Log in

Progress in inhomogeneity of critical current and index n value measurements on HTS tapes using contact-free method

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The development of high temperature superconducting (HTS) tapes has recently made great progress, and Bi-based tapes (1 G) and YBCO coated conductor (2 G) are commercially fabricated with practical length. Application of HTS in electric power apparatuses made important achievement, various superconducting devices were demonstrated in grid, laying solid foundation for their commercialization. However, since their intrinsic microscopic defects such as weak-link, granularity, small second phase likely exist, critical current and index n value of the HTS tapes in practical length are impossible homogeneous, which have significant influences on safety, stability and efficiency of the HTS apparatuses. Therefore, critical current and index n value are two important parameters describing inhomogeneity of HTS tapes, thus two important indices for evaluating quality of practical long HTS tapes. This paper focuses on main progresses in inhomogeneity of critical current and index n value measurements on HTS tapes using contact-free methods. The statistical analytical methods evaluating the inhomogeneity of critical current and index n value are suggested. They can provide essential references for design and operation of HTS apparatuses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mukoyama S, Maruyama S, Yagi M, et al. Development of 500 m power cable in super-ACE project. Cryog, 2005, 45: 11–15

    Article  Google Scholar 

  2. Furuse M, Fuchino S, Higuchi N. Investigation of structure of superconducting power transmission cables with LN2 counter-flow cooling. Physica C, 2003, 386: 474–479

    Article  Google Scholar 

  3. Lin Y B, Lin L Z, Gao Z Y, et al. Development of HTS transmission power cable. IEEE Trans Appl Supercond, 2001, 11: 2371–2374

    Article  Google Scholar 

  4. Xin Y, Hou B, Bi Y F, et al. Introdcution of China’s first live grid installed HTS power cable system. IEEE Trans Appl Supercond, 2005, 15: 1814–1817

    Article  Google Scholar 

  5. Funaki K, Iwakuma M, Kajikawa K, et al. Development of 500 kVA-calss oxide superconducting power transformer operated at liquid-nitrogen temperature. Cryog, 1998, 38: 211–220

    Article  Google Scholar 

  6. Schwenterly S W, McConnel B W, Demko J A, et al. Performance of a 1MVA HTS demonstration transformer. IEEE Trans Appl Supercond, 1999, 9: 680–684

    Article  Google Scholar 

  7. Zueger H. 630 kVA high temperature superconducting transformer. Cryog, 1998, 38: 1169–1172

    Article  Google Scholar 

  8. Hatta H, Nitta T, Oide T, et al. Experimental study on characteristics of superconducting fault current limiters connected in series. Supercond Sci Technol, 2004, 17: S276–S280

    Article  Google Scholar 

  9. Elschner S, Bruer F, Noe M, et al. Manufacture and testing of MCP2212 Bifilar coils for a 10 MVA fault current limiter. IEEE Trans Appl Supercond, 2003, 13: 1980–1983

    Article  Google Scholar 

  10. Barnes P N, Sumption M D, Rhoads G L. Review of high power density superconducting generators: Present state and prospects for incorporating YBCO windings. Cryog, 2005, 45: 670–686

    Article  Google Scholar 

  11. Meinert M, Leghissa M, Schlosser R, et al. System test of a 1-MVA-HTS-transformer connected to a converter-fed drive for rail vehicles. IEEE Trans Appl Supercond, 2003, 13: 2348–2351

    Article  Google Scholar 

  12. Schlosser R, Schmidt H, Leghissa M, et al. Development of high temperature superconducting transformers for railway application. IEEE Trans Appl Supercond, 2003, 13: 2325–2330

    Article  Google Scholar 

  13. Luongo C A, Baldwin T, Ribeiro P, et al. A 100 MJ SMES demonstration at FSU-CAPS. IEEE Trans Appl Supercond, 2003, 2: 1800–1805

    Article  Google Scholar 

  14. Zhou Y, Gu C, Cai H K. The third type DC flow in pulse tube cryocooler. Sci China Ser E-Tech Sci, 2009, 52: 3491–3496

    Article  Google Scholar 

  15. Cheng S J, Tang Y J. High temperature SMES for improving power system stabilities. Sci China Ser E-Tech Sci, 2007, 50: 402–412

    Article  MATH  Google Scholar 

  16. Yumura H, Ashibe Y, Itoh H, et al. Phase II of the Albany HTS cable project. IEEE Trans Appl Supercond, 2009, 19: 1698–1701

    Article  Google Scholar 

  17. Inoue Y, Kurahashi H, Fukumoto Y, et al. Critical current density and n-value of NbTi wires at low field. IEEE Trans Appl Supercond, 1995, 5: 1201–1204

    Article  Google Scholar 

  18. Rimikis A, Kimmich R, Schneider Th. Investigation of n-values of composite superconductors. IEEE Trans Appl Supercond, 2000, 10: 1239–1242

    Article  Google Scholar 

  19. Torii S, Akita S, Iijima Y, et al. Transport current properties of Y-Ba-Cu-O tape above critical current region. IEEE Trans Appl Supercond, 2001, 11: 1844–1847

    Article  Google Scholar 

  20. Dutoit B, Sjoestroem M, Stavrev S. Bi (2223) Ag sheathed tape I c and exponent n characterization and modeling under DC applied magnetic field. IEEE Trans Appl Supercond, 1999, 9: 809–812

    Article  Google Scholar 

  21. Paasi Jaakko A J, Lahtinen Markku J. Characterization of high-T c superconducting tapes using Hall sensors. Physica C, 1993, 216: 382–390

    Article  Google Scholar 

  22. Passi J, Kalliohaka T, Korpela A, et al. Homogeneity studies of multifilamentary BSCCO tapes by three-axis Hall sensor magnetometry. IEEE Trans Appl Supercond, 1999, 9: 1598–1601

    Article  Google Scholar 

  23. Grimaldi G, Nauer M, Kinder H. Continuous reel-to-reel measurement of the critical currents of coated conductor. Appl Phys Lett, 2001, 79: 4390–4392

    Article  Google Scholar 

  24. Wang Y S, Lu Y, Xu X, et al. Detecting and describing the inhomogeneity of critical current in practical long HTS tapes using contact-free method. Cryog, 2007, 47: 225–231

    Article  Google Scholar 

  25. Furtner S, Nemetschek R, Semerad R, et al. Reel-to-reel critical current measurement of coated conductors. Supercond Sci Technol, 2004, 17: S281–S284

    Article  Google Scholar 

  26. Brandt Ernst H, Indenbom M. Type-II-superconductor strip with current in a perpendicular magnetic field. Phys Rev B, 1993, 48: 12893–12909

    Article  Google Scholar 

  27. Haken Bennie ten, Budde Rob A M, ten Kate Herman H J. Continuous recording of the transport properties of a superconducting tape using an AC magnetic field technique. IEEE Trans Supercond, 1999, 9: 1607–1610

    Google Scholar 

  28. Bentzon M D, Vase P. Critical current measurements on long BSCCO tapes using a contact-free method. IEEE Trans Appl Supercond, 1999, 19: 1594–1597

    Article  Google Scholar 

  29. Kamitani A, Takayama T, Saitoh A, et al. Numerical investigations on nondestructive and contactless method for measuring critical current density by permanent magnet method. Physica C, 2006, 445-448: 417–421

    Article  Google Scholar 

  30. Yamada H, Minakuchi T, Itoh D, et al. Variable-RL-cancel circuit for precise J c measurement using third-harmonic voltage method. Physica C, 2007, 452: 107–112

    Article  Google Scholar 

  31. Nakao K, Hirabayashi I, Tajima S. Application of an inductive technique to the characterization of superconducting thin films based on power law I–V relation. Physica C, 2005, 426–431: 1127–1131

    Article  Google Scholar 

  32. Fukumoto Y, Kiuchi M, Otabe E S, et al. Evolution of E-J characteristics of YBCO coated-conductor by AC inductive method using third-harmonic voltage. Physica C, 2004, 412-414: 1036–1040

    Article  Google Scholar 

  33. Ohshima S, Takeishi K, Sito A, et al. A simple measurement technique for critical current density by using a permanent magnet. IEEE Trans Supercond, 2005, 15: 2911–2914

    Article  Google Scholar 

  34. Kamitani A, Takayama T, Saitoh A, et al. Numerical investigations on nondestructive and contactless method for measuring critical current density by permanent magnet method. Physica C, 2003, 445–448: 417–421

    Google Scholar 

  35. Ohshima S, Takeishi K, Saito A, et al. New contactless Jc-measure-ment system for HTS coated conductor. Physica C, 2006, 445-448: 682–685

    Article  Google Scholar 

  36. Rutel I B, Meintosh C, Caruso A, et al. Quantitative analysis of current density distributions from magneto-optical images of superconducting Yba2Cu3O7-δ thin films. Supercond Sci Technol, 2004, 17: 269–273

    Article  Google Scholar 

  37. Yamasaki H, Mawatari Y, Nakagawa Y. Nondestructive inductive measurement of local critical current densities in Bi-2223 thick films. Supercond Sci Technol, 2004, 17: 916–920

    Article  Google Scholar 

  38. Dutoit B, Sjostrom M, Starve S. Bi(2223) Ag sheathed tape I c and exponent n characterization and modeling under DC applied magnetic field. IEEE Trans Supercond, 1999, 9: 809–812

    Article  Google Scholar 

  39. Wang Y S, Lu Y, Xiao L Y, et al. Index number (n) measurements on BSCCO tapes using a contact-free method. Supercond Sci Technol, 2003, 16: 628–631

    Article  Google Scholar 

  40. Yamada H, Bitoh A, Mitsuno Y, et al. Measurement of critical current density of YBCO film by a mutual inductive method using a drive coil with a sharp iron core. Physica C, 2005, 433: 59–64

    Article  Google Scholar 

  41. Takayama T, Kamitani A, Tanaka A, et al. Numerical simulation of shielding current density in HTS: Application of high-performance method for calculating improper integral. Physica C, 2009, 469: 1439–1442

    Article  Google Scholar 

  42. Wang Y S, Dai S T, Zhao X, et al. Effects of critical current inhomogeneity in long high temperature superconducting tapes on the self-field loss, studied by means of numerical analysis. Supercond Sci Technol, 2006, 19: 1278–1281

    Article  Google Scholar 

  43. Ogawa K, Osamura K. The Weibull distribution function as projection of two-dimensional critical current distribution in Ag/Bi2Sr2Ca2Cu3O10+δ tapes. Supercond Sci Technol, 2007, 20: 479–484

    Article  Google Scholar 

  44. Lu Y, Xu X, Wang Y S, et al. Device designed to detect the uniformity of critical current of HTS tapes using contact-free method (in Chinese). Chin J Low Temp Phys, 2003, S1: 24–28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YinShun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Guan, X., Zhang, H. et al. Progress in inhomogeneity of critical current and index n value measurements on HTS tapes using contact-free method. Sci. China Technol. Sci. 53, 2239–2246 (2010). https://doi.org/10.1007/s11431-010-4033-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-010-4033-1

Keywords

Navigation