Skip to main content
Log in

Ultra low frequency waves observed by Double Star TC-1 in the plasmasphere boundary layer

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

The characteristic and properties of ULF waves in the plasmasphere boundary layer during two very quiet periods are present. The ULF waves were detected by Double Star TC-1 when the spacecraft passed through the plasmasphere in an outbound and inbound trajectories, respectively. A clear association between the ULF waves and periodic variations of energetic ions fluxes was observed. The observations showed that the wave frequency was higher inside the plasmasphere than outside. The mechanism generating these ULF waves and possible diagnosing of the “classical plasmapause” location with the ULF wave were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takahashi, K. ULF waves in the magnetosphere. Rev Geophys Suppl, 1991, 29(2): 1066–1074

    Google Scholar 

  2. Fraser B J. Recent development in magnetosphere diagnostics using ULF waves. Space Sci Rev, 2003, 107(4): 149–156

    Article  MathSciNet  Google Scholar 

  3. Obayashi T, Jacobs J A. Geomagnetic pulsations and Earth’s outer atmosphere. Geophys J R Astr Soc, 1958, 1(1): 53–63

    Google Scholar 

  4. Gul’elmi A V. Theory of hydromagnetic sounding of plasma concentration in the exosphere. Geomagn Aeron, 1967, 7(1): 357–366

    Google Scholar 

  5. Takahashi K, McPherron R L. Harmonic structure of Pc 3–4 pulsations. J Geophys Res, 1982, 87: 1504–1516

    Article  Google Scholar 

  6. Waters C L. ULF resonance structure in the magnetosphere. Adv Space Res, 2000, 25(7–8): 1541–1558

    Article  Google Scholar 

  7. Carpenter D L, Giles B L, Chappell C R, et al. Plasmasphere dynamics in the duskside bulge region: A new look at an old topic. J Geophys Res, 1993, 98: 19243–19271

    Article  Google Scholar 

  8. Carpenter D L, Lemaire J. The plasmasphere boundary layer. Ann Geophys, 2004, 22(12): 4291–4298

    Article  Google Scholar 

  9. Zong Q G, Zhou X Z, Li X, et al. Ultralow frequency modulation of energetic particles in the dayside magnetosphere. Geophys Res Lett, 2007, 34(12): L12105. doi: 10 1029/2007GL029915

  10. Grinsted A, Moore J C, Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes Geophys, 2004, 11(5–6): 561–566

    Google Scholar 

  11. Benson R F, Webb P A, Green J L, et al. Magnetospheric electron densities inferred from upper-hybrid band emissions. Geophys Res Lett, 2004, 31(20): L20803. doi: 10 1029/2004GL020847

  12. Rae I J, Watt C E J, Fenrich F R, et al. Energy deposition in the ionosphere through a global field line resonance. Ann Geophys, 2007, 25(12): 2529–2539

    Google Scholar 

  13. Rostoker G, Samson J C, Creutzberg F, et al. CANOPUS-A ground based instrument array for remote sensing the high latitude ionosphere during the ISTP/GGS program. Space Sci Rev, 1995, 71(2): 743–760

    Article  Google Scholar 

  14. Woch J, Kremser G, Korth A, et al. Curvature-driven drift mirror instability in the magnetosphere. Planet Space Sci, 1988, 36(12): 383–393

    Article  Google Scholar 

  15. Allan W, White S P, Poulter E M. Impulse-excited hydromagnetic cavity and field line resonances in the magnetosphere. Planet Space Sci, 1986, 34(4): 371–385

    Article  Google Scholar 

  16. Wright A N. Dispersion and wave coupling in inhomogeneous MHD waveguides. J Geophys Res, 1994, 99: 159–167

    Article  Google Scholar 

  17. Southwood D J. Some features of field line resonances in the magnetosphere. Planet Space Sci, 1974, 22(3): 483–491

    Article  Google Scholar 

  18. Chen L, Hasegawa A. A theory of long-period magnetic pulsations. 1. Steady state excitation of field line resonance. J Geophys Res, 1974, 79: 1024–1032

    Article  Google Scholar 

  19. Pu Z Y, Kivelson M G. Kelvin-Helmholtz instability at the magnetopause: Solution for compression plasmas. J Geophys Res, 1983, 88: 841–852

    Article  Google Scholar 

  20. Pu Z Y, Kivelson M G. Kelvin-Helmholtz instability at the magnetopause: energy flux into the magnetosphere. J Geophys Res, 1983, 88: 853–861

    Article  Google Scholar 

  21. Kivelson M G, Southwood D J. Coupling of global magnetospheric MHD eigenmodes to field line resonances. J Geophys Res, 1986, 91(10): 4345–4351

    Article  Google Scholar 

  22. Rae I J, Donovan E F, Mann I R, et al. Evolution and characteristics of global Pc5 ULF waves during a high solar wind speed interval. J Geophys Res, 2005, 110: A12211. doi: 10 1029/2005JA011007

  23. Tu J, Song P, Reinisch B W, et al. Smooth electron density transition from plasmasphere to the subauroral region. J Geophys Res, 2007, 112: A05227. doi: 10 1029/2007JA012298

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZuYin Pu.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 40504017, 40636031)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, L., Zhang, X., Pu, Z. et al. Ultra low frequency waves observed by Double Star TC-1 in the plasmasphere boundary layer. Sci. China Ser. E-Technol. Sci. 51, 1685–1694 (2008). https://doi.org/10.1007/s11431-008-0263-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-008-0263-x

Keywords

Navigation