Skip to main content
Log in

An efficient algorithm for factoring polynomials over algebraic extension field

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

An efficient algorithm is proposed for factoring polynomials over an algebraic extension field defined by a polynomial ring modulo a maximal ideal. If the maximal ideal is given by its Gröbner basis, no extra Gröbner basis computation is needed for factoring a polynomial over this extension field. Nothing more than linear algebraic technique is used to get a characteristic polynomial of a generic linear map. Then this polynomial is factorized over the ground field. From its factors, the factorization of the polynomial over the extension field is obtained. The algorithm has been implemented in Magma and computer experiments indicate that it is very efficient, particularly for complicated examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbott J A, Bradford R J, Davenport J H. A remark on factoritation. ACM Sigsam Bull, 1985, 19: 31–33 & 37

    Article  MATH  Google Scholar 

  2. Abbott J A, Davenport J H. Polynomial factorization: An exploration of Lenstra’s algorithm. In: Lecture Notes in Computer Science, vol. 378. New York: Springer, 1989, 391–402

    Google Scholar 

  3. Cohen H. A Course in Computational Algebraic Number Theory. New York: Springer, 1993

    Book  MATH  Google Scholar 

  4. Cox D, Little J, O’Shea D. Using Algebraic Geometry, 2nd ed. New York: Springer, 2004

    Google Scholar 

  5. Encarnacion M J. Computing gcds of polynomials over algebraic number fields. J Symb Comput, 1995, 20: 299–313

    Article  MathSciNet  MATH  Google Scholar 

  6. Encarnacion M J. Factoring polynomials over algebraic number fields via norms. In: Proc of ISSAC 97. New York: ACM Press, 1997, 265–270

    Chapter  Google Scholar 

  7. Faugère J, Gianni P, Lazard D, et al. Efficient computation of zero-dimensional Gröbner bases by change of ordering. J Symb Comput, 1993, 16: 329–344

    Article  MATH  Google Scholar 

  8. Gao X S, Chou S C. On the theory of resolvents and its applications. Syst Sci Math Sci, 1999, 12: 17–30

    MATH  Google Scholar 

  9. Gao S H, Wan D Q, Wang M S. Primary decomposition of zero-dimensional ideals over finite fields. Math Comput, 2009, 78: 509–521

    Article  MathSciNet  MATH  Google Scholar 

  10. Hoeij M V, Monagan M. Algorithms for polynomial GCD computation over algebraic function fields. In: Proc of ISSAC 2004. New York: ACM Press, 2004, 297–304

    Google Scholar 

  11. Kaltofen E. Factorization of Polynomials, Computer Algebra: Symbolic and Algebraic Computation. Buchberger B, Collins G E, Loos R, eds. Wien-New York: Springer-Verlag, 1982, 95–113

  12. Kaltofen E. Polynomial Factorization 1982–1986. In: Chudnovsky D V, Jenks D R, eds. Computers in Mathematcis. New York-Basel: Marcel Dekker, 1990, 285–209

    Google Scholar 

  13. Landau S. Factoring polynomial over algebraic number fields. SIAM J Comput, 1985, 184–195

    Google Scholar 

  14. Langemyr L, McCallum S. The computation of polynomial greatest common divisors over an algebraic number field. J Symb Comput, 1989, 8: 429–448

    Article  MathSciNet  MATH  Google Scholar 

  15. Lenstra H W, Lenstra A K, Lovasz L. Factoring polynomials with rational coefficients. Math Ann, 1982, 261: 515–534

    Article  MathSciNet  MATH  Google Scholar 

  16. Lenstra A K. Factoring multivariate polynomials over algebraic number fields. SIAM J Comput, 1987, 16: 591–598

    Article  MathSciNet  MATH  Google Scholar 

  17. Li B H. An algorithm to decompose a polynomial ascending set into irreducible ones. Acta Anal Funct Appl, 2005, 7: 97–105

    Article  MathSciNet  MATH  Google Scholar 

  18. Maza M M, Rioboo R. Polynomial Gcd computations over towers of algebraic extensions. In: Lecture Notes in Computer Science, vol. 948. Proceeding of 11th International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. New York: Springer, 1995, 365–382

    Chapter  Google Scholar 

  19. Monico C. Computing the primary decomposition of zero-dimensional ideals. J Symb Comput, 2002, 34: 451–459

    Article  MathSciNet  MATH  Google Scholar 

  20. Noro M, Yokoyama K. Prime decomposition of radical ideals and algebraic factorization of polynomials. Research Report ISIS-RR-96-8E, 1996

    Google Scholar 

  21. Noro M, Yokoyama K. Factoring polynomials over algebraic extension fields. Josai Inform Sci Researches, 1997, 9: 11–33

    Google Scholar 

  22. Noro M, Yokoyama K. Implementation of prime decomposition of polynomial ideals over small finite fields. J Symb Comput, 2004, 38: 1227–1246

    Article  MathSciNet  Google Scholar 

  23. Rouillier F. Solving zero-dimensional polynomail systems through the Rational Univariate Representation. Rapport de recherche INRIA 3426, 1998

    Google Scholar 

  24. Steel A. Conquering inseparability: Primary decomposition and multivariate factorization over algebraic function fields of positive characteristic. J Symb Comput, 2005, 40: 1053–1075

    Article  MathSciNet  MATH  Google Scholar 

  25. Trager B M. Algebraic Factoring and Rational Function Integration. In: Proceedings of the third ACM Symposium on Symbolic and algebraic Computation. New York: ACM Press, 1976, 219–226

    Chapter  Google Scholar 

  26. Wang D M. A method for factoring multivariate polynomials over successive algebraic extension fields. Preprint RISC-Linz. Austria: Johannes Kepler University, 1992

    Google Scholar 

  27. Wang D M, Lin D D. A Method for Factoring Multivariate Polynomials over Successive Algebraic Extension Fields. Mathematics and Mathematics-Mechanization, Jinan: Shandong Education Press, 2000, 138–172

    Google Scholar 

  28. Wang P S. Factoring multivariate polynomial over algebraic number fields. Math Comp, 1978, 32: 1215–1231

    Article  MathSciNet  MATH  Google Scholar 

  29. Wu WT. Basic Principles of Mechanical Theorem Proving in Geometries (Part on Elementary Geometries, in Chinese). Beijing: Science Press, 1984

    Google Scholar 

  30. Wu W T. Basic principles of mechanical theorem proving in elementary geometries. J Sys Sci Math Sci, 1986, 4: 207–235; J Autom Reasoning, 2: 221–252

    Google Scholar 

  31. Yuan C M. Generalized Trager’s factorization algorithm over successive extension fields. J Sys Sci Math Sci, 2006, 26: 533–540

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DingKang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Wang, D. An efficient algorithm for factoring polynomials over algebraic extension field. Sci. China Math. 56, 1155–1168 (2013). https://doi.org/10.1007/s11425-013-4586-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-013-4586-0

Keywords

MSC(2010)

Navigation