Skip to main content
Log in

Pharmacological explanation for the medicinal use of Juniperus excelsa in hyperactive gastrointestinal and respiratory disorders

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Crude extract of Juniperus excelsa (JeExt), which tested positive for the presence of anthraquinone, flavonoids, saponins, sterols, terpenes and tannin, exhibited a protective effect against castor oil-induced diarrhoea in mice at 100–1000 mg/kg. In rabbit jejunum preparations, JeExt (0.01–1.0 mg/mL) caused relaxation of spontaneous and K+ (80 mM)-induced contractions at similar concentrations to papaverine, whereas verapamil was relatively more potent against K+. JeExt (0.03–0.3 mg/mL) shifted Ca2+ concentration–response curves to the right, like papaverine or verapamil. JeExt (0.003–0.01 mg/mL) caused a leftward shift of isoprenaline-induced inhibitory concentration–response curves, similar to papaverine. JeExt (1.0–30 mg/kg) caused suppression of carbachol (CCh, 100 μg/kg)-induced increase in inspiratory pressure of anaesthetized rats. In guinea-pig trachea, JeExt (0.001–3.0 mg/mL) relaxed CCh (1 μM)- and high K+-induced contractions and shifted isoprenaline-induced inhibitory curves to the left. This study suggests that Juniperus excelsa possibly exhibits a combination of Ca2+ antagonist and phosphodiesterase inhibitory effects, which provides a pharmacological basis for its traditional use in disorders of gut and airways hyperactivity, such as diarrhoea, colic and asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shanjani PS (2003) Nitrogen effect of callus induction and plant regeneration of Juneiperus excels. Int J Agr Biol 4–5:419–422

    Google Scholar 

  2. Emami SA, Asili J, Mohagheghi Z, Hassanzadeh MK (2007) Antioxidant activity of leaves and fruits of Iranian conifers. Evidence Based Complem Altern Med 4:313–319

    Article  CAS  Google Scholar 

  3. Kaul MK (1997) Medicinal plants of Kashmir and Ladakh: temperate and cold acrid Himalaya. Indus Publishing Company, New Delhi, p 173

    Google Scholar 

  4. Nadkarni KM (1976) Indian materia medica, 3rd edn. Popular Prakashan, Bombay, p 713

    Google Scholar 

  5. Baquar SR (1989) Medicinal and poisonous plants of Pakistan. Printas, Karachi, pp 248–249

    Google Scholar 

  6. Usmanghani K, Saeed A, Alam MT (1997) Indusyunic medicine. University of Karachi Press, Karachi, pp 468–469

    Google Scholar 

  7. Thappa RK, Aggarwal SG, Kapahi BK, Sarin YK (1987) Juniperus excelsa leaf oil, a new source of cedrol. J Nat Prod 50:323–324

    Article  CAS  Google Scholar 

  8. Adam RP (1990) The chemical composition of leaf oils of Juniperus excelsa M. Bieb. J Essent Oil Res 2:45–48

    Google Scholar 

  9. Unlu M, Unlu GV, Vural N, Donmez E, Akmak O (2008) Composition and antibacterial activity of juniperus excelsa essential oil. Chem Nat Comp 44:129–131

    Article  CAS  Google Scholar 

  10. Muhammad I, Mossa JS, Al-Yahya MA, Ramadan AF, El-Feraly FS (2006) Further antibacterial diterpenes from the bark and leaves of Juniperus procera Hochst. ex Endl. Phytother Res 9:584–588

    Article  Google Scholar 

  11. Marina D, Sokovi J, Risti M, Grubi A (2004) Chemical composition and antifungal activity of the essential oil from Juniperus excelsa berries. Pharm Biol 42:328–334

    Article  Google Scholar 

  12. Williamson EM, Okpako DT, Evans FJ (1998) Selection preparation and pharmacological evaluation of plant material. Wiley, Chichester, pp 15–23

    Google Scholar 

  13. Edeoga HO, Okwu DE, Mbaebie BO (2005) Phytochemical constituents of some Nigerian medicinal plants. Afr J Biotechnol 4:685–688

    CAS  Google Scholar 

  14. National Research Council (1996) Guide for the care and use of laboratory animals. National Academy Press, Washington, pp 1–7

  15. Khan A, Gilani AH (2011) Antidiarrheal and bronchodilatory activities of olive extract. Lat Am J Pharm 30:5–9

    CAS  Google Scholar 

  16. Gilani AH, Shah AJ, Ghayur MN, Majeed K (2005) Pharmacological basis for the use of turmeric in gastrointestinal and respiratory disorders. Life Sci 76:3089–3105

    Article  PubMed  CAS  Google Scholar 

  17. Farre AJ, Columbo M, Fort M, Gutierrez B (1991) Differential effects of various Ca++ antagonists. Gen Pharmacol 22:177–181

    PubMed  CAS  Google Scholar 

  18. Godfraind T, Miller R, Wibo M (1986) Calcium antagonism and calcium entry blockade. Pharmacol Rev 38:321–416

    PubMed  CAS  Google Scholar 

  19. Lorenz KL, Wells JN (1983) Potentiation of the effects of sodium nitroprusside and isoproterenol by selective phosphodiesterase inhibitors. Mol Pharmacol 23:424–430

    PubMed  CAS  Google Scholar 

  20. Gilani AH, Khan A, Subhan F, Khan M (2005) Antispasmodic and bronchodilator activities of St. John’s wort are putatively mediated through dual inhibition of calcium influx and phosphodiesterase. Fundam Clin Pharmacol 19:695–705

    Article  PubMed  CAS  Google Scholar 

  21. Gilani AH, Khan A, Ali T, Ajmal S (2008) Mechanisms underlying the antispasmodic and bronchodilatory properties of Terminalia bellerica fruit. J Ethnopharmacol 116:528–538

    Article  PubMed  Google Scholar 

  22. Shah AJ, Gilani AH (2010) Bronchodilatory effect of Acorus calamus is mediated through multiple pathways. J Ethnopharmacol 131:471–477

    Article  PubMed  Google Scholar 

  23. Reynolds IJ, Gould RJ, Snyder SH (1984) Loperamide: blockade of calcium channels as a mechanism for antidiarrhoeal effects. J Pharmacol Exp Ther 231:628–632

    PubMed  CAS  Google Scholar 

  24. Croci T, Landi M, Elmonds-Alt X, Le-Fur G, Maffrand JP, Manara L (1997) Role of tachykinins in castor oil-induced diarrhoea in rats. Br J Pharmacol 121:375–380

    Article  PubMed  CAS  Google Scholar 

  25. Bashir S, Memon R, Gilani AH (2011) Antispasmodic and antidiarrheal activities of Valeriana hardwickii rhizome are putatively mediated through calcium channel blockade. Evidence Based Complem Altern Med 1:6

    Google Scholar 

  26. Rang HP, Dale MM, Ritter JM (1999) Pharmacology, 4th edn. Churchill Livingstone, New York, pp 289–290

    Google Scholar 

  27. Fleckenstein A (1977) Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Annu Rev Pharmacol Toxicol 17:149–166

    Article  PubMed  CAS  Google Scholar 

  28. Smith BV, Spina D, Page CP (2006) Phosphodiesterase inhibitors. Br J Pharmacol 47:252–257

    Google Scholar 

  29. Sopory S, Kaur T, Visweswariah SS (2004) The cGMP-binding, cGMP-specific phosphodiesterase (PDE5): intestinal cell expression, regulation and role in fluid secretion. Cell Signal 16:681–692

    Article  PubMed  CAS  Google Scholar 

  30. Evans WV, Monie RD, Crimmins J, Seton A (1980) Aminophylline, salbutamol and combined intravenous infusions in acute severe asthma. Br J Dis Chest 74:385–389

    Article  PubMed  CAS  Google Scholar 

  31. Nielsen-Kudsk JE, Karlsson JA, Persson CGA (1986) Relaxant effects of xanthines, a β2-receptor agonist and Ca++ antagonists in guinea-pig tracheal preparations contracted by potassium or carbachol. Eur J Pharmacol 128:33–40

    Article  PubMed  CAS  Google Scholar 

  32. Rabe KF, Magnussen H, Dent G (1995) Theophylline and selective PDE inhibitors as bronchodilators and smooth muscle relaxants. Eur Respir J 8:637–642

    PubMed  CAS  Google Scholar 

  33. Murthy KS (2006) Signaling for contractions and relaxation in smooth muscle of the gut. Annu Rev Physiol 68:345–374

    Article  PubMed  CAS  Google Scholar 

  34. Schwarz ER, Kapur V, Rodriguez J, Rastogi S, Rosanio S (2007) The effects of chronic phosphodiesterase-5 inhibitor use on different organ systems. Int J Impot Res 19:139–148

    Article  PubMed  CAS  Google Scholar 

  35. Lipworth BJ (2005) Phosphodiesterase-4 inhibitors for asthma and chronic obstructive pulmonary disease. Lancet 365:167–175

    Article  PubMed  CAS  Google Scholar 

  36. Chung KF (2006) Phosphodiesterase inhibitors in airways disease. Eur J Pharmacol 533:110–117

    Article  CAS  Google Scholar 

  37. Nawarth H (1981) Action potential, membrane currents and force of contraction in cat ventricular heart muscle treated with papaverine. J Pharmacol Exp Ther 218:544–549

    Google Scholar 

  38. Twiss MA, Harman E, Chesrown S, Handeles L (2002) Efficacy of calcium channel blockers as maintenance therapy for asthma. Br J Clin Pharmacol 53:243–249

    Article  CAS  Google Scholar 

  39. Billman GE (1992) The antiarrhythmic effects of the calcium antagonists. In: Epstein M (ed) Calcium antagonists in clinical medicine. Hanley and Belfus, Philadelphia, pp 183–212

    Google Scholar 

  40. Gilani AH, Atta-ur-Rahman (2005) Trends in ethnopharmacology. J Ethnopharmacol 100:43–49

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partially supported by Higher Education Commission of Pakistan. Munasib Khan was on leave from University of Malakand for the PhD study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwarul-Hassan Gilani.

Additional information

M. Khan was on leave from University of Malakand for the PhD study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, M., Khan, Au., Najeeb-ur-Rehman et al. Pharmacological explanation for the medicinal use of Juniperus excelsa in hyperactive gastrointestinal and respiratory disorders. J Nat Med 66, 292–301 (2012). https://doi.org/10.1007/s11418-011-0605-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-011-0605-z

Keywords

Navigation