Skip to main content
Log in

As-Rigid-As-Possible Surface Morphing

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

This paper presents a new morphing method based on the “as-rigid-as-possible” approach. Unlike the original as-rigid-as-possible method, we avoid the need to construct a consistent tetrahedral mesh, but instead require a consistent triangle surface mesh and from it create a tetrahedron for each surface triangle. Our new approach has several significant advantages. It is much easier to create a consistent triangle mesh than to create a consistent tetrahedral mesh. Secondly, the equations arising from our approach can be solved much more efficiently than the corresponding equations for a tetrahedral mesh. Finally, by incorporating the translation vector in the energy functional controlling interpolation, our new method does not need the user to arbitrarily fix any vertex to obtain a solution, allowing artists automatic control of interpolated mesh positions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wolberg G. Image morphing: A survey. The Visual Computer, 1998, 14(8/9): 360–372.

    Article  Google Scholar 

  2. Bao H, Peng Q. Interactive 3D morphing. Computer Graphics Forum, 1998, 17(3): 23–30.

    Article  Google Scholar 

  3. Alexa M. Merging polyhedral shapes with scattered features. The Visual Computer, 2000, 16(1): 26–37.

    Article  MATH  Google Scholar 

  4. Lee T Y, Huang P H. Fast and intuitive metamorphosis of 3D polyhedral models using SMCC mesh merging scheme. IEEE Trans. Visualization and Computer Graphics, 2003, 9(1): 85–98.

    Article  MathSciNet  Google Scholar 

  5. Alexa M, Cohen-Or D, Levin D. As-rigid-as-possible shape interpolation. In Proc. SIGGRAPH 2000, New Orleans, USA, Jul. 23–28, 2000, pp.157–164.

  6. Sumner R W, Zwicker M, Gotsman C, Popovi’c J. Mesh-based inverse kinematics. ACM Transaction on Graphics, 2005, 24(3): 488–495.

    Article  Google Scholar 

  7. Cohen-Or D, Solomovici A, Levin D. Three dimensional distance field metamorphosis. ACM Trans. Graphics, 1998, 17(2): 116–141.

    Article  Google Scholar 

  8. Fang X, Bao H, Heng P A, Wong T T, Peng Q. Continuous field based free-form surface modeling and morphing. Computer and Graphics, 2001, 25(2): 235–243.

    Article  Google Scholar 

  9. Jin X, Wan H, Peng Q. Geometric deformations based on 3D volume morphing. Journal of Computer Science and Technology, 2001, 16(5): 443–449.

    Article  MATH  Google Scholar 

  10. Kanai T, Suzuki H, Kimura F. Three-dimensional geometric metamorphosis based on harmonic maps. The Visual Computer, 14(4):166--176, 1998.

    Article  Google Scholar 

  11. Gregory A, State A, Lin M C, Manocha D, Livingston M A. Feature-based surface decomposition for correspondence and morphing between polyhedra. In Proc. the Computer Animation 1998, Philadelphia, USA, Jun. 8–10, 1998, pp.64–71.

  12. Yu J B, Chuang J H. Consistent mesh parameterizations and its application in mesh morphing. In Computer Graphics Workshop 2003, Hualien, China, Aug. 28–29, 2003.

  13. Praun E, Sweldens W, Schroder P. Consistent mesh parameterizations. In Proc. SIGGRAPH 2001, Los Angeles, USA, Aug. 12–17, 2001, pp.179–184.

  14. Floater M S, Gotsman C. How to morph tilings injectively. Journal of Computational and Applied Mathematics, 1999, 101(1/2): 117–129.

    Article  MathSciNet  MATH  Google Scholar 

  15. Gotsman C, Surazhsky V. Guaranteed intersection-free polygon morphing. Computers and Graphics, 2001, 25(1): 67–75.

    Article  Google Scholar 

  16. T Ju, Schaefer S, Warren J. Mean value coordinates for closed triangular meshes. ACM Transaction on Graphics, 2005, 24(3): 561–566.

    Article  Google Scholar 

  17. Alexa M. Local control for mesh morphing. In Proc. the International Conference on Shape Modeling and Applications, Genova, Italy, May 7–11, 2001, pp.209–215.

  18. Lipman Y, Sorkine O, Cohen-Or D, Levin D, Rossl C, Seidel H P. Differential coordinates for interactive mesh editing. In Proc. the 2004 ACM Symposium on Shape and Physical Modeling, Genova, Italy, Jun. 7–9, 2004, pp.181–190.

  19. Sorkine O, Cohen-Or D, Lipman Y. Laplacian surface editing. In Proc. the 2004 Eurographics/ACM SIGGRAPH Symp. Processing, Nice, France, Jul. 8–10, 2004, pp.179–188.

  20. Hu J, Liu L, Wang G. Dual Laplacian morphing for triangular meshes. Computer Animation and Virtual Worlds, 2007, 18(4/5): 271–277.

    Article  Google Scholar 

  21. Sheffer A, Kraevoy V. Pyramid coordinates for morphing and deformation. In Proc. the 2nd International Symposium of 3D Data Processing, Visualization and Transmission, Thessaloniki, Greece, Sept. 6–9, 2004, pp.68–75.

  22. Lipman Y, Sorkine O, Levin D, Cohen-Or D. Linear rotation-invariant coordinates for meshes. ACM Transaction on Graphics, 2005, 24(3): 479–487.

    Article  Google Scholar 

  23. Yu Y, Zhou K, Xu D, Shi X, Bao H, Guo B, Shum H Y. Mesh editing with Poisson-based gradient field manipulation. ACM Trans. Graphics, 2004, 23(3): 644–651.

    Article  Google Scholar 

  24. Xu D, Zhang H, Wang Q, Bao H. Poisson shape interpolation. In Proc. the 2005 ACM Symp. Solid and Physical Modeling, Boston, USA, Jun. 13–15, 2005, pp.267–274.

  25. Xu W W, Zhou K, Gradient domain mesh deformation --- A survey. Journal of Computer Science and Technology, 2009, 24(1): 6–18.

    Article  Google Scholar 

  26. Shoemake K, Duff T. Matrix animation and polar decomposition. In Proc. the Conference on Graphics Interface 1992, Vancouver, Canada, May 11–15, 1992, pp.258–264.

  27. Sumner R W, Popovi’c J. Deformation transfer for triangle meshes. ACM Trans. Graphics, 2004, 23(3): 399–405.

    Article  Google Scholar 

  28. Hu S M, Li C F, Zhang H. Actual morphing: A physical-based approach for blending. In Proc. the 2004 ACM Symposium on Solid and Physical Modeling, Genova, Italy, Jun. 9–11, 2004, pp.309–314.

  29. Yan H B, Hu S M, Martin R. Morphing based on strain field interpolation. Journal of Visualization and Computer Animation, 2004, 15(3/4): 443–452.

    Google Scholar 

  30. Yan H B, Hu S M, Martin R. 3D morphing using strain field interpolation. Journal of Computer Science and Technology, 2007, 22(1): 147–155.

    Article  Google Scholar 

  31. Bao Y, Guo X, Qin H. Physically based morphing of point-sampled surfaces. Computers Animation and Virtual Worlds, 2005, 16(3/4): 509–518.

    Article  Google Scholar 

  32. Sorkine O, Alexa M. As-rigid-as-possible surface modeling. In Proc. Eurographics Symposium on Geometry Processing, Barcelona, Spain, Jul. 4–6, 2007, pp.109–116.

  33. Liu L, Zhang L, Xu Y, Gotsma Cn, Gortler S J. A local/global approach to mesh parameterization. In Proc. Eurographics Symposium on Geometry Processing, Copenhagen, Denmark, 2008, pp.1495–1504.

  34. Igarashi T, Moscovich T, Hughes J F. As-rigid-as-possible shape manipulation. ACM Transaction on Graphics, 2005, 23(3): 1134–1141.

    Article  Google Scholar 

  35. Sumner R W, Popovic J. Deformation transfer for triangle meshes. ACM Trans. Graphics, 2004, 23(3): 399–405.

    Article  Google Scholar 

  36. Shoemake K. Animating rotation with quaternion curves. In Proc. SIGGRAPH 1985, San Francisco, USA, Jul. 22–26, 1985, pp.245–254.

  37. Yan H B, Hu S M, Martin R, Yang Y L. Shape deformation using a skeleton to drive simplex transformations. IEEE Trans. Visualization and Computer Graphics, 2008, 14(3): 693–706.

    Article  Google Scholar 

  38. Fu H, Tai C L, Au O K C. Morphing with Laplacian coordinates and spatial-temporal texture. In Proc. Pacific Graphics 2005, Macao, China, Oct. 12–14, 2005, pp.100–102.

  39. Baxter W, Barla P, Anjyo K I. Rigid shape interpolation using normal equations. In Proc. the 6th International Symposium on Non-Photorealistic Animation and Rendering, Annecy, France, Jun. 9–11, 2008, pp.59–64.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Bing Yan.

Additional information

This work was supported by the National Natural Science Foundation of China under Grant No. 61003132, the EPSRC Travel Grant, the Technology Project of MOUHURD of China under Grant No. 2010-K9-25, and the Development Project of BMCE under Grant No. KM200710016001.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, YS., Yan, HB. & Martin, R.R. As-Rigid-As-Possible Surface Morphing. J. Comput. Sci. Technol. 26, 548–557 (2011). https://doi.org/10.1007/s11390-011-1154-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-011-1154-3

Keywords

Navigation