Skip to main content
Log in

Suspended solids in freshwater systems: characterisation model describing potential impacts on aquatic biota

  • LAND USE IN LCA
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

An Erratum to this article was published on 18 May 2016

Abstract

Purpose

High concentration of suspended solids (SS)—fine fraction of eroded soil particles—reaching lotic environments and remaining in suspension by turbulence can be a significant stressor affecting the biodiversity of these aquatic systems. However, a method to assess the potential effects caused by SS on freshwater species in the life cycle impact assessment (LCIA) phase still remains a gap. This study develops a method to derive endpoint characterisation factors, based on a fate and effect model, addressing the direct potential effects of SS in the potential loss of aquatic invertebrate or algae and macrophyte species.

Methods

Characterisation factors for the assessment of the direct effects of SS in the potential disappearance of macroinvertebrates, algae and macrophytes in 22 different European river sections were derived by combining both fate and effect factors. Fate factors reflect the environmental residence time of SS in river sections per unit of water volume in this same section. Effect factors were calculated from an empirical relationship between the potentially disappeared fraction (PDF) of aquatic species and the concentration of SS. These factors were determined based on a concentration-response function, on gross soil erosion data and detrimental concentrations of SS for different taxa in river sections.

Results and discussion

The product of fate with effect factors constitutes the characterisation factors for both macroinvertebrates, algae and macrophytes. The estimated EFs are higher for macroinvertebrates in almost all river sections under study, showing that the potential effects caused by SS throughout the water column are higher for macroinvertebrates than for algae and macrophytes. For macroinvertebrates, characterisation factors range between 2.8 × 10− 7 and 3.1 × 10− 3 PDF m3 day mg−1, whereas for algae and macrophytes, they range between 1.6 × 10− 7 and 4.7 × 10− 4 PDF m3 day mg−1.

Conclusions

The developed method and the derived characterisation factors enable a consistent assessment and comparison of the potential detrimental effects of SS on aquatic invertebrate and macrophyte communities at different locations. Long-term, on-site monitoring of SS levels in the water column should be performed to understand the magnitude of the effects of SS on aquatic biota and to determine the taxa that are more sensitive to the SS stressor. This monitoring will improve the robustness of the proposed LCA method, the reliability of the characterisation factors, as well as the development of characterisation factors for a wider range of rivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alabaster JS, Llyod DS (1982) Finely divided solids. In: Albaster JS, Llyod DS (eds) Water quality criteria for freshwater fish. Butterworth, London, pp 1–20

    Chapter  Google Scholar 

  • Alatorre LC, Beguería S, García-Ruiz JM (2010) Regional scale modeling of hillslope sediment delivery: a case study in the Barasona reservoir watershed (Spain) using WATEM/SEDEM. J Hydrol 391:109–123

    Article  Google Scholar 

  • Allan JD, Castillo MM (2007) Stream ecology. Structure and function of running waters. Springer, Dordrecht

    Book  Google Scholar 

  • Angermeier PL, Wheeler AP, Rosenberger AE (2004) A conceptual framework for assessing impacts of roads on aquatic biota. Fisheries 29:19–29

    Article  Google Scholar 

  • Barcelo D, Petrovic M (2007) Soil protection, sediment monitoring and key recommendations. Sustain Manage Sediment Resour 1:311–322

    Article  Google Scholar 

  • Becvar M (2006) Sediment load and suspended sediment concentration prediction. Soil Water Res 1:23–31

    Google Scholar 

  • Bilotta GS, Brazier RE (2008) Understanding the influence of suspended solids on water quality and aquatic biota. Water Res 42:1849–2861

    Article  Google Scholar 

  • Chon H-S, Ohandja D-G, Voulvoulis N (2012) The role of sediments as a source of metals in river catchments. Chemosphere 88:1250–1256

    Article  CAS  Google Scholar 

  • Collins AL, Naden PS, Sear DA, Jones JI, Foster IDL, Morrow K (2011) Sediment targets for informing river section management: international experience and prospects. Hydrol Process 15:2112–2129

    Article  Google Scholar 

  • de Vente J, Poesen J (2005) Predicting soil erosion and sediment yield at the basin scale: scale issues and semi-quantitative models. Earth-Sci Rev 71:95–125

    Article  Google Scholar 

  • Dolédec S, Statzner B, Bournard M (1999) Species traits for future biomonitoring across ecoregions: patterns along a human-impacted river. Freshw Biol 42:737–758

    Article  Google Scholar 

  • Fekete BM, Vorosmarty CJ, Grabs W (2002) Global composite runoff fields on observed river discharge and simulated water balances. University of New Hampshire and Global Runoff Data Centre. German Federal Institute of Hydrology, Koblenz

    Google Scholar 

  • Gobin A, Govers G (eds) (2003) Pan-European soil erosion risk assessment project. Third annual report to the European Commission. EC contract no. QLK5 CT-1999-01323. European Commission, Brussels

  • Goedkoop M, Heijungs R, Huijbregts M, Schryver AD, Struijs J, van Zelm R (2012) ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer, Netherlands

    Google Scholar 

  • Hanafiah MM, Xenopoulos MA, Pfister S, Leuven RSEW, Huijbregts MAJ (2011) Characterization factors for water consumption and greenhouse gas emissions based on freshwater fish species extinction. Environ Sci Technol 45:5272–5278

    Article  CAS  Google Scholar 

  • Harrod TR, Theurer FD (2002) Sediment. In: Haygarth PM, Jarvis SC (eds) Agriculture, hydrology and water quality. CAB International, Wallingford, p 502

    Google Scholar 

  • Helmes RJK, Huijbregts MAJ, Henderson AD, Jolliet O (2012) Spatially explicit fate factors of phosphorous emissions to freshwater at the global scale. Int J Life Cycle Assess 17(5):646–654

    Article  CAS  Google Scholar 

  • Henley WF, Patterson MA, Neves RJ, Lemly AD (2000) Effects of sedimentation and turbidity on lotic food webs: a concise review of natural resource managers. Rev Fish Sci 8:125–139

    Article  Google Scholar 

  • Huijbregts MAJ, Thissen U, Guinée JB, Jager T, Kalf D, van de Meent D, Ragas AMJ, Sleeswijk AW, Reijnders L (2000) Priority assessment of toxic substances in life cycle assessment. Part I: calculation of toxicity potentials for 181 substances with the nested multi-media fate, exposure and effects model USES-LCA. Chemosphere 41(1):541–573

    Article  CAS  Google Scholar 

  • Humbert S, Schryver AD, Bengoa X, Margni M, Jolliet O (2012) IMPACT 2002+: user guide. Draft for version Quantis 2.21. Lausanne, Switzerland

  • Jones A, Panagos P, Barcelo S, Bouraoui F, Bosco C, Dewitte O, Gardi C, Erhard M, Hervás J, Hiederer R, Jeffery S, Lukewillw L, Marmo L, Montanarella L, Olazábal C, Petersen J-E, Penizek V, Strassburger T, Tóth G, Van Den Eechaut M, Van Liedekerke N, Verheijen F, Viestova E, Yigini Y (2012a) The state of soil in Europe. JRC reference reports. European Commission, Office for official publications of the European Communities, Luxemburg

  • Jones A, Bosco C, Yigini P, Montanarella L (2012b) Soil erosion by water: 2011 update of IRENE agri-environmental indicator 21. JRC Scientific Report 68729

  • Jones JI, Collins AL, Naden PS, Sear DA (2012c) The relationship between fine sediment and macrophytes in river. River Res Appl 28:1006–1018

    Article  Google Scholar 

  • Kasai M, Brierley GJ, Page MJ, Marutani T, Trustrum NA (2005) Impacts of land use change on patterns of sediment flux in Weraamaia catchment, New Zealand. Catena 64:27–60

    Article  Google Scholar 

  • Kefford BJ, Zalizniak L, Dunlop JE, Nugegoda D, Choy SC (2010) How are macroinvertebrates of slow flowing lotic systems directly affected by suspended and deposited sediments? Environ Pollut 158:543–550

    Article  CAS  Google Scholar 

  • Kirk KL, Gilbert JJ (1990) Suspended clay and the population dynamics of planktonic rotifers and Cladocerans. Ecology 71(5):1741–1755

    Article  Google Scholar 

  • Koellner T, de Baan L, Beck T, Brandão M, Civit B, Margni M, Milà i canals L, Saad R, Maia de Souza D, Muller-Wenk R (2013) UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. Int J Life Cycle Assess 18:1188–1202

    Article  Google Scholar 

  • Lane LJ, Hernandez M, Nichols M (1997) Processes controlling sediment yield from watersheds as functions of spatial scale. Environ Model Softw 12(4):355–369

    Article  Google Scholar 

  • Larsen HF, Hauschild M (2007) Evaluation of ecotoxicity effect indicators for use in LCIA. Int J Life Cycle Assess 12(1):24–33

    Article  CAS  Google Scholar 

  • Levine SN, Zehrer RF, Burns CW (2005) Impact of resuspended sediment on zooplankton feeding in Lake Waihola, New Zealand. Freshw Biol 50:1515–1536

    Article  Google Scholar 

  • Lloyd DS, Koenings JP, LaPierre JD (1987) Effects of turbidity in fresh waters of Alaska. N Am J Fish Manag 7:34–45

    Article  Google Scholar 

  • López-Tarazón JA, Batalla RJ, Vericat D, Francke T (2009) Suspended sediment transport in a highly erodible catchment: the river Isábena (Southern Pyrenees). Geomorphology 109:210–221

    Article  Google Scholar 

  • Luce JJ, Steele R, Lapointe MF (2010) A physically based statistical model of sand abrasion effects on periphyton biomass. Ecol Model 221:353–361

    Article  Google Scholar 

  • Moatar F, Person G, Meybeck M, Coynel A, Etcheber H, Crouzet P (2006) The influence of contrasting suspended particulate matter transport regimes on the bias and precision of flux estimates. Sci Total Environ 370:515–531

    Article  CAS  Google Scholar 

  • Motulsky H, Christopoulos A (2003) Fitting models to biological data using linear and nonlinear regression. A practical guide to curve fitting. GraphPad Software Inc., San Diego

    Google Scholar 

  • Newcombe CP, MacDonald DD (1991) Effects of suspended sediments on aquatic ecosystems. N Am J Fish Manag 11:72–82

    Article  Google Scholar 

  • Nimmo DR, Hamaker TL, Mathews E, Young WT (1982) The long-term effects of suspended particulates on survival and reproduction of the mysid shrimp, Mysidopsis bahia, in the laboratory. In: Mayer GF (ed) Ecological stress and the New York Bight. Estuarine Research Federation, Columbia, pp 413–422

    Google Scholar 

  • Nuttal PM, Bielby GH (1973) The effect of China-clay wastes on stream macroinvertebrates. Environ Pollut 5:77–86

    Article  Google Scholar 

  • Panagos P, Karydas CG, Gitas IZ, Montanarella L (2012) Monthly soil erosion monitoring based on remotely sensed biophysical parameters: a case study in Strymonas river basin towards a functional pan-European service. Int J Digital Earth 6:461–487

    Article  Google Scholar 

  • Panagos P, Karydas CG, Ballabio C, Gitas IZ (2014) Seasonal monitoring of soil erosion at regional scale: an application of the G2 model in Crete focusing on agricultural land uses. Int J Appl Earth Obs Geoinf 27(Part B):147–155

    Article  Google Scholar 

  • Parkhill KL, Gulliver JS (2002) Effect of inorganic sediment on whole-stream productivity. Hydrobiologia 170:91–101

    Google Scholar 

  • Posthuma L, Traas TP, Suter GW II (2002) General introduction to species sensitivity distributions. In: Posthuma L, Suter GW II, Traas TP (eds) Species sensitivity distributions in ecotoxicology. Lewis, Boca Raton, pp 421–433

    Google Scholar 

  • Quinn JM, Davies-Colley RJ, Hickey CW, Vickers ML, Ryan PA (1992) Effects of clay discharges on streams. Hydrobiologia 248(3):235–247

    Article  Google Scholar 

  • Quinteiro P, Dias AC, Ridoutt B, Arroja L (2014) A framework for modelling the transport and deposition of eroded particles towards water systems in a life cycle inventory. Int J Life Cycle Assess 19(6):1200–1213

    Article  Google Scholar 

  • Reis A, Parker A, Alencoão A (2010) Sediment quality assessment in mountainous river basins: a case study in northern Portugal. 1st Seminar on river basins—the hydrographic regions of the north and the future perspectives of management. Porto, Portugal

  • Renard KG, Foster GR, Weesies GA, Mc Cool DK, Yoder DC (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agricultural Handbook no. 703, United States Department of Agriculture

  • Richardson J, Jowett IG (2002) Effects of sediment on fish communities in East Cape streams, North Island, New Zealand. N Z J Mar Freshw Res 36(2):431–442

    Article  Google Scholar 

  • Ricker MC, Odhiambo BK, Church JM (2008) Spatial analysis of soil erosion and sediment fluxes: a paired watershed study of two Rappahannock River tributaries, Stafford County, Virginia. Environ Manag 41:766–778

    Article  Google Scholar 

  • SAGE (2010) Global river discharge database. Center for sustainability and the global environment. http://www.sage.wisc.edu/riverdata/index.php?qual=32. Accessed Sep 2013

  • Soeken-Gittinger LA, Stoeckel JA, Havel JE (2009) Differing effects of suspended sediments on the performance of native and exotic Daphnia. Freshw Biol 54:495–504

    Article  Google Scholar 

  • Statzner B, Bis B, Dolédec S, Usseglio-Polatera P (2001) Perspectives for biomonitoring at large spatial scales: a unified measure for the functional composition of invertebrate communities in European running waters. Basic Appl Ecol 2:73–85

    Article  Google Scholar 

  • Struijs J, Beusen A, de Zwart D, Huijbregts M (2011) Characterization factors for inland water eutrophication at the damage level in life cycle impact assessment. Int J Life Cycle Assess 16:59–64

    Article  CAS  Google Scholar 

  • Struijs J, Beusen A, van Jaarsveld H, Huijbregts MAJ (2013) Eutrophication. In: Goedkoop M, Heijungs R, Huijbregts M, Schryver A, Struijs J, van Zelm R (eds) ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level, pp 58–66

  • Taylor KG, Owens PN (2009) Sediments in urban river basins: a review of sediment-contaminant dynamics in an environmental system conditioned by human activities. J Soils Sediments 9:281–303

    Article  Google Scholar 

  • Tomanová S (2007) Functional aspect of macroinvertebrate communities in tropical and temperate running waters. Dissertation, Masaryk University

  • UNEP/WHO (1996) Sediment measurements. In: Bartram J, Balance R (eds) Water quality monitoring—a practical guide to the design and implementation of freshwater quality studies and monitoring programmes. United Nations Environment Programme and the World Health Organization, London. http://www.who.int/en/. Accessed Mar 2014

  • Van Nieuwenhuyse EE, LaPierre JD (1986) Effects of placer gold mining on primary production in subarctic rivers of Alaska. J Am Water Resour Assoc 22(1):91–99

    Article  Google Scholar 

  • Van Zelm R, Huijbregts MAJ, van de Meent D (2009) USES-LCA 2.0—a global nested multi-media fate, exposure, and effects model. Int J Life Cycle Assess 14:282–284

    Article  Google Scholar 

  • Vanmaercke M, Maetens W, Poesen J, Jankauskas B, Jankauskiene G, Verstraeten G, de Vente J (2012) A comparison of measured catchment sediment yields with measured and predicted hillslope erosion rates in Europe. J Soils Sediments 12:586–602

    Article  Google Scholar 

  • Verones F, Hanafiah MM, Pfister S, Huijbregts MA, Pelletier GJ, Koehler A (2010) Characterization factors for thermal pollution in freshwater aquatic environments. Environ Sci Technol 44:9364–9369

    Article  CAS  Google Scholar 

  • Wagener SM, LaPierre JD (1985) Effects of placer mining on the macroinvertebrates communities of interior Alaska. Fresh Invertebr Biol 4:208–214

    Article  Google Scholar 

  • White S (2008) Sediment dynamics and their influence on the design of monitoring programmes. In: Quevauviller P, Borchers U, Thompson C, Simonart T (eds) The Water Framework Directive—ecological and chemical status monitoring. Wiley, Chichester, pp 243–253

    Google Scholar 

  • Wischmeier WH, Smith DD (1978) Predicting soil erosion losses: a guide to conservation planning. USDA Agricultural Handbook, no. 537, 58 pp

  • WWF (2011) The status of wild Atlantic salmon: a river by river assessment. World Wide Fund for Nature

  • Zajdlik BA (2006) Potential statistical models for describing species sensitivity distributions. Prepared for the Canadian Council of Ministers of the Environment, CCME project no. 382

  • Zwart D (2002) Observed regularities in species sensitivity distribution for aquatic species. In: Posthuma L, Sutter GW II, Traas TP (eds) Species sensitivity distributions in ecotoxicology. Lewis, Boca Raton, pp 315–344

    Google Scholar 

Download references

Acknowledgments

Thanks are due to FCT (Science and Technology Foundation—Portugal) and POHP/FSE funding programme for the scholarships granted to Paula Quinteiro (SFRH/BD/78690/2011) and João Pestana (SFRH/BPD/45342/2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Quinteiro.

Additional information

Responsible editor: Thomas Koellner

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quinteiro, P., Dias, A.C., Araújo, A. et al. Suspended solids in freshwater systems: characterisation model describing potential impacts on aquatic biota. Int J Life Cycle Assess 20, 1232–1242 (2015). https://doi.org/10.1007/s11367-015-0916-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-015-0916-5

Keywords

Navigation