Skip to main content

Advertisement

Log in

Gas-phase ammonia and water-soluble ions in particulate matter analysis in an urban vehicular tunnel

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Ammonia is a key alkaline species, playing an important role by neutralizing atmospheric acidity and inorganic secondary aerosol production. On the other hand, the NH3/NH4 + increases the acidity and eutrophication in natural ecosystems, being NH3 classified as toxic atmospheric pollutant. The present study aims to give a better comprehension of the nitrogen content species distribution in fine and coarse particulate matter (PM2.5 and PM2.5–10) and to quantify ammonia vehicular emissions from an urban vehicular tunnel experiment in the metropolitan area of São Paulo (MASP). MASP is the largest megacity in South America, with over 20 million inhabitants spread over 2000 km2 of urbanized area, which faces serious environmental problems. The PM2.5 and PM2.5–10 median mass concentrations were 44.5 and 66.6 μg m−3, respectively, during weekdays. In the PM2.5, sulfate showed the highest concentration, 3.27 ± 1.76 μg m−3, followed by ammonium, 1.14 ± 0.71 μg m−3, and nitrate, 0.80 ± 0.52 μg m−3. Likewise, the dominance (30 % of total PM2.5) of solid species, mainly the ammonium salts, NH4HSO4, (NH4)2SO4, and NH4NO3, resulted from simulation of inorganic species. The ISORROPIA simulation was relevant to show the importance of environment conditions for the ammonium phase distribution (solid/aqueous), which was solely aqueous at outside and almost entirely solid at inside tunnel. Regarding gaseous ammonia concentrations, the value measured inside the tunnel (46.5 ± 17.5 μg m−3) was 3-fold higher than that outside (15.2 ± 11.3 μg m−3). The NH3 vehicular emission factor (EF) estimated by carbon balance for urban tunnel was 44 ± 22 mg km−1. From this EF value and considering the MASP traffic characteristics, it was possible to estimate more than 7 Gg NH3 year−1 emissions that along with NOx are likely to cause rather serious problems to natural ecosystems in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aas W, Shao M, Jin L, Larssen T, Zhao D, Xiang R, Zhang J, Xiao J, Duan L (2007) Air concentrations and wet deposition of major inorganic ions at five non-urban sites in China, 2001-2003. Atmos Environ 41:1706–1716

    Article  CAS  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19. doi:10.1109/TAC.1974.1100705

  • Akaike H (1973) Information theory as an extension of the maximum likelihood principle. In: Second International Symposium on Information Theory. 267–281

  • Akaike H, Parzen E, Tanabe K, Kitagawa G (1998) Selected papers of Hirotugu Akaike. Springer Series in Statistics. doi:10.1007/978-1-4612-1694-0

  • Allen R, Myles L, Heuer MW (2011) Ambient ammonia in terrestrial ecosystems: a comparative study in the Tennessee Valley, USA. Sci Total Environ 409:2768–2772. doi:10.1016/j.scitotenv.2011.04.017

    Article  CAS  Google Scholar 

  • Aneja VP, Blunden J, James K, Schlesinger WH, Knighton R, Gilliam W, Jennings G, Niyogi D, Cole S (2008) Ammonia assessment from agriculture: U.S. status and needs. J Environ Qual 37:515–520. doi:10.2134/jeq2007.0002in

    Article  CAS  Google Scholar 

  • Bian YX, Zhao CS, Ma N, Chen J, Xu WY (2014) A study of aerosol liquid water content based on hygroscopicity measurements at high relative humidity in the North China plain. Atmos Chem Phys 14:6417–6426. doi:10.5194/acp-14-6417-2014

    Article  CAS  Google Scholar 

  • Bourotte C, Curi-Amarante AP, Forti MC, Pereira LAA, Braga AL, Lotufo PA (2007) Association between ionic composition of fine and coarse aerosol soluble fraction and peak expiratory flow of asthmatic patients in São Paulo city (Brazil). Atmos Environ 41:2036–2048. doi:10.1016/j.atmosenv.2006.11.004

    Article  CAS  Google Scholar 

  • Bouwman AF, Van Grinsven JJM, Eickhout B (2010) Consequences of the cultivation of energy crops for the global nitrogen cycle. Ecol Appl 20:101–109. doi:10.1890/08-0608.1

    Article  CAS  Google Scholar 

  • Bouwman AF, Van Vuuren DP, Derwent RG, Posch M (2002) A global analysis of acidification and eutrophication of terrestrial ecosystems. Water Air Soil Pollut 141:349–382. doi:10.1023/A:1021398008726

    Article  CAS  Google Scholar 

  • Bozdogan H (2000) Akaike’s information criterion and recent developments in information complexity. J Math Psychol 44:62–91. doi:10.1006/jmps.1999.1277

    Article  Google Scholar 

  • Braz HL, Ito DT, da Silva JAF, do Lago CL, Pedrotti JJ (2011) Trace levels determination of ammonium by flow injection analysis using gas-diffusion and capacitively coupled contactless conductivity detection. Electroanalysis 23:2594–2600. doi:10.1002/elan.201100317

  • Brito J, Rizzo LV, Herckes P, Vasconcellos PC, Caumo SES, Fornaro A, Ynoue RY, Artaxo P, Andrade MF (2013) Physical-chemical characterization of the particulate matter inside two road tunnels in the São Paulo metropolitan area. Atmos Chem Phys Discuss 13:20839–20883. doi:10.5194/acpd-13-20839-2013

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304. doi:10.1177/0049124104268644

  • CETESB (2015) Qualidade do Ar no Estado de São Paulo 2014. São Paulo, Secretaria do Meio Ambiente, Série Relatórios, ISSN 0103–4103, São Paulo (www.cetesb.sp.gov.br)

  • CETESB (2011) Relatório de qualidade do ar no Estado de São Paulo 2010, São Paulo, Secretaria do Meio Ambiente, Série Relatórios, ISSN 0103–4103, São Paulo (www.cetesb.sp.gov.br)

  • Chang Y, Zou Z, Deng C, Huang K, Collet JL, Lin J, Zhuang G (2016) The importance of vehicle emissions as a source of atmospheric ammonia in the megacity of shanghai. Atmos Chem Phys 16:3577–3594. doi:10.5194/acp-16-3577-2016

    Article  CAS  Google Scholar 

  • Coelho LHG, Melchert WR, Rocha FR, Rocha FRP, Gutz IGR (2010) Versatile microanalytical system with porous polypropylene capillary membrane for calibration gas generation and trace gaseous pollutants sampling applied to the analysis of formaldehyde, formic acid, acetic acid and ammonia in outdoor air. Talanta 83:84–92. doi:10.1016/j.talanta.2010.08.045

    Article  CAS  Google Scholar 

  • Colberg CA, Tona B, Catone G, Sangiorgio C, Stahel WA, Sturm P, Staehelin J (2005) Statistical analysis of the vehicle pollutant emissions derived from several European road tunnel studies. Atmos Environ 39:2499–2511. doi:10.1016/j.atmosenv.2004.07.037

    Article  CAS  Google Scholar 

  • Durbin TD, Wilson RD, Norbeck JM, Miller JW, Huai T, Rhee SH (2002) Estimates of the emission rates of ammonia from light-duty vehicles using standard chassis dynamometer test cycles. Atmos Environ 36:1475–1482

    Article  CAS  Google Scholar 

  • Fornaro A, Gutz IGR (2003) Wet deposition and related atmospheric chemistry in the São Paulo metropolis, Brazil: part 2—contribution of formic and acetic acids. Atmos Environ 37:117–128. doi:10.1016/S1352-2310(02)00885-3

    Article  CAS  Google Scholar 

  • Fountoukis C, Nenes A (2007) ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH4 +–Na+–SO4 2−–NO3 –Cl–H2O aerosols. Atmos Chem Phys 7:4639–4659. doi:10.5194/acp-7-4639-2007

  • Fraser MP, Cass GR (1998) Detection of excess ammonia emissions from in-use vehicles and the implications for fine particle control. Environ Sci Technol 32:1053–1057. doi:10.1021/es970382h

    Article  CAS  Google Scholar 

  • Gillies JA, Gertler AW, Sagebiel JC, Dippel WA (2001) On-road particulate matter (PM2.5 and PM10) emissions in the Sepulveda tunnel, Los Angeles. Environ Sci Technol 35:1054–1063

    Article  CAS  Google Scholar 

  • Ianniello A, Spataro F, Esposito G, Allegrini I, Rantica E, Ancora MP, Hu M, Zhu T (2010) Occurrence of gas phase ammonia in the area of Beijing (China). Atmos Chem Phys 10:9487–9503. doi:10.5194/acp-10-9487-2010

    Article  CAS  Google Scholar 

  • Karanasiou A, Diapouli E, Cavalli F, Eleftheriadis K, Viana M, Alastuey A, Querol X, Reche C (2011) On the quantification of atmospheric carbonate carbon by thermal/optical analysis protocols. Atmos Meas Tech 4:2409–2419. doi:10.5194/amt-4-2409-2011

    Article  CAS  Google Scholar 

  • Kean AJ, Harley RA, Littlejohn D, Kendall GR (2000) On-road measurement of ammonia and other motor vehicle exhaust emissions. Environ Sci Technol 34:3535–3539

    Article  CAS  Google Scholar 

  • Kean AJ, Littlejohn D, Ban-Weiss GA, Harley RA, Kirchstetter TW, Lunden MM (2009) Trends in on-road vehicle emissions of ammonia. Atmos Environ 43:1565–1570. doi:10.1016/j.atmosenv.2008.09.085

    Article  CAS  Google Scholar 

  • Krupa SV (2003) Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review. Environ Pollut 124(2):179–221. doi:10.1016/S0269-7491(02)00434-7

    Article  CAS  Google Scholar 

  • Lawrence S, Sokhi R, Ravindra K, Mao H, Prain HD, Bull ID (2013) Source apportionment of traffic emissions of particulate matter using tunnel measurements. Atmos Environ 77:548–557. doi:10.1016/j.atmosenv.2013.03.040

    Article  CAS  Google Scholar 

  • Leal TFM, Fontenele APG, Pedrotti JJ, Fornaro A (2004) Composição iônica majoritária de águas de chuva no centro da cidade de São Paulo. Quim Nov. 27:855–861. doi:10.1590/S0100-40422004000600003

  • Li Q-F, Wang-Li L, Shah SB, Jayanty RKM, Bloomfield P (2013) Ammonia concentrations and modeling of inorganic particulate matter in the vicinity of an egg production facility in southeastern USA. Environ Sci Pollut Res 21:4675–4685. doi:10.1007/s11356-013-2417-z

    Article  Google Scholar 

  • Liu T, Wang X, Wang B, Ding X, Deng W, Lü S, Zhang Y (2014) Emission factor of ammonia (NH3) from on-road vehicles in China: tunnel tests in urban Guangzhou. Environ Res Lett 9:064027. doi:10.1088/1748-9326/9/6/064027

    Article  Google Scholar 

  • Livingston C, Rieger P, Winer A (2009) Ammonia emissions from a representative in-use fleet of light and medium-duty vehicles in the California south coast Air Basin. Atmos Environ 43:3326–3333. doi:10.1016/j.atmosenv.2009.04.009

    Article  CAS  Google Scholar 

  • Mancilla Y, Mendoza A (2012) A tunnel study to characterize PM2.5 emissions from gasoline-powered vehicles in Monterrey, Mexico. Atmos Environ 59:449–460. doi:10.1016/j.atmosenv.2012.05.025

    Article  CAS  Google Scholar 

  • Martins LD, Andrade MF, Freitas ED, Pretto A, Gatti LV, Albuquerque ÉL, Tomaz E, Guardani ML, Martins MHRB, Junior OMA (2006) Emission factors for gas-powered vehicles traveling through road tunnels in São Paulo, Brazil. Environ Sci Technol 40:6722–6729. doi:10.1021/es052441u

    Article  CAS  Google Scholar 

  • Metro (2013) Pesquisa de Mobilidade 2012 - Região Metropolitana de São Paulo, Síntese das Informações. RT 9.00.00.00/1 V4–0002 versão 2. http://www.metro.sp.gov.br/metro/arquivos/mobilidade-2012/relatorio-sintese-pesquisa-mobilidade-2012.pdf. Accessed Aug 2014

  • Miranda RM, Andrade MF, Fornaro A, Astolfo R, Andre PA, Saldiva P (2012) Urban air pollution: a representative survey of PM2.5 mass concentrations in six Brazilian cities. Air Qual Atmos Health 5:63–77. doi:10.1007/s11869-010-0124-1

    Article  Google Scholar 

  • Nenes A, Pandis SN, Pilinis C (1998) ISORROPIA: a new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquat Geochem 4:123–152. doi:10.1023/A:1009604003981

    Article  CAS  Google Scholar 

  • Nogueira T, Souza K, Fornaro A, Andrade MF, Carvalho LR (2015) On-road emissions of carbonyls from vehicles powered by biofuel blends in traffic tunnels in the metropolitan area of Sao Paulo, Brazil. Atmos Environ 108:88–97

    Article  CAS  Google Scholar 

  • Paerl HW (1995) Coastal eutrophication in relation to atmospheric nitrogen deposition: current prospective. Ophelia 41:237–259

    Article  Google Scholar 

  • Pérez-Martínez PJ, Miranda RM, Nogueira T, Guardani ML, Fornaro A, Ynoue R, Andrade MF (2014) Emission factors of air pollutants from vehicles measured inside road tunnels in São Paulo: case study comparison. Int J Environ Sci Technol. doi:10.1007/s13762-014-0562-7

  • Perrino C, Catrambone M, Di Menno Di Bucchianico A, Allegrini I (2002) Gaseous ammonia in the urban area of Rome, Italy and its relationship with traffic emissions. Atmos Environ 36:5385–5394. doi:10.1016/S1352-2310(02)00469-7

    Article  CAS  Google Scholar 

  • Phan NT, Kim KH, Shon ZH, Jeon EC, Jung K, Kim NJ (2013) Analysis of ammonia variation in the urban atmosphere. Atmos Environ 65:177–185. doi:10.1016/j.atmosenv.2012.10.049

    Article  CAS  Google Scholar 

  • Sánchez-Ccoyllo OR, Ynoue RY, Martins LD, Astolfo R, Miranda RM, Freitas ED, Borges AS, Fornaro A, Freitas H, Moreira A, Andrade MF (2009) Vehicular particulate matter emissions in road tunnels in Sao Paulo, Brazil. Environ Monit Assess 149:241–249. doi:10.1007/s10661-008-0198-5

    Article  Google Scholar 

  • Santos MA, Illanes CF, Fornaro A, Pedrotti JJ (2007) Acid rain in downtown São Paulo City, Brazil. Water Air Soil Pollut Focus 7(1):85–92. doi:10.1007/s11267-006-9081-y

    Article  Google Scholar 

  • Shelef M, Gandhi HS (1972) Industrial and engineering chemistry, production research and development. 11

  • Staehelin J, Keller C, Stahel WA, Schläpfer K, Steinemann U, Bürgin T, Schneider S (1997) Modelling emission factors of road traffic from a tunnel study. Environmetrics 8:219–239. doi:10.1002/(SICI)1099-095X(199705)8:3<219::AID-ENV254>3.0.CO;2-M

    Article  CAS  Google Scholar 

  • Suarez-Bertoa R, Zardini AA, Astorga C (2014) Ammonia exhaust emissions from spark ignition vehicles over the new European driving cycle. Atmos Environ 97:43–53. doi:10.1016/j.atmosenv.2014.07.050

    Article  CAS  Google Scholar 

  • Suarez-Bertoa R, Zardini AA, Lilova V, Meyer D, Nakatani S, Hibel F, Ewers J, Clairotte M, Hill L (2015) Intercomparison of real-time tailpipe ammonia measurements from vehicles tested over the new world-harmonized light-duty vehicle test cycle (WLTC). 7450–7460. doi:10.1007/s11356-015-4267-3

  • Tao J, Gao J, Zhang L, Zhang R, Che H, Zhang Z, Lin Z, Jing J, Cao J, Hsu S-C (2014) PM2.5 pollution in a megacity of Southwest China: source apportionment and implication. Atmos Chem Phys Discuss 14:5147–5196. doi:10.5194/acpd-14-5147-2014

    Article  Google Scholar 

  • Vasconcellos PC, Souza DZ, Sanchez-Ccoyllo O, Bustillos JOV, Lee H, Santos FC, Nascimento KH, Araújo MP, Saarnio K, Teinilä K, Hillamo R (2010) Determination of anthropogenic and biogenic compounds on atmospheric aerosol collected in urban, biomass burning and forest areas in São Paulo, Brazil. Sci Total Environ 408:5836–5844. doi:10.1016/j.scitotenv.2010.08.012

    Article  CAS  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, Fourth edn. Springer, New York

    Book  Google Scholar 

  • Vieira-Filho MS, Pedrotti JJ, Fornaro A (2013) Contribution of long and mid-range transport on the sodium and potassium concentrations in rainwater samples, São Paulo megacity, Brazil. Atmos Environ 79:299–307

    Article  CAS  Google Scholar 

  • WHO (2006) World Health Organization - air quality guidelines, global update 2005: particulate matter, ozone, nitrogen dioxide and sulphur dioxide. Germany; chap. 10:217–305

  • Zhang R, Wang G, Guo S, Zamora ML, Ying Q, Lin Y, Wang W, Hu M, Yuan Wang Y (2015) Formation of urban fine particulate matter. Chem Rev 115(10):3803–3855. doi:10.1021/acs.chemrev.5b00067

    Article  CAS  Google Scholar 

  • Zhou R, Wang S, Shi C, Wang W, Zhao H, Liu R, Chen L, Zhou B (2014) Study on the traffic air pollution inside and outside a road tunnel in shanghai, China. PLoS One 9:e112195. doi:10.1371/journal.pone.0112195

    Article  Google Scholar 

Download references

Acknowledgments

This research has been supported by FAPESP (2008/58104-8, Project NUANCE-SPS—Narrowing the uncertainties on aerosol and climate changes in São Paulo State). The authors are grateful to the meteorological station (IAG/USP), CPTEC/INPE, CETESB, and INMET for the atmospheric data. We also thank CAPES (PROEX, Post-Graduation Program of Meteorology, IAG/USP) and CNPq for the student grants provided. We thank Dr. E. Abrantes for the English revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adalgiza Fornaro.

Additional information

Responsible editor: Gerhard Lammel

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira-Filho, M.S., Ito, D.T., Pedrotti, J.J. et al. Gas-phase ammonia and water-soluble ions in particulate matter analysis in an urban vehicular tunnel. Environ Sci Pollut Res 23, 19876–19886 (2016). https://doi.org/10.1007/s11356-016-7177-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7177-0

Keywords

Navigation