Skip to main content
Log in

Rice husks and their hydrochars cause unexpected stress response in the nematode Caenorhabditis elegans: reduced transcription of stress-related genes

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Currently, char substrates gain a lot of interest since soils amended with such substrates are being discussed to increase in fertility and productivity, water retention, and mitigation of greenhouse gases. Char substrates can be produced by carbonization of organic matter. Among different process conditions, temperature is the main factor controlling the occurrence of organic and inorganic contaminants such as phenols and furfurals, which may affect target and non-target organisms. The hydrochar produced at 200 °C contained both furfural and phenol with concentrations of 282 and 324 mg kg−1 in contrast to the 300 °C hydrochar, which contained only phenol with a concentration of 666 mg kg−1. By washing with acetone and water, these concentrations were significantly reduced. In this study, the potential toxic effects of hydrochars on the free-living nematode Caenorhabditis elegans were investigated via gene transcription studies using the following four matrices: (i) raw rice husk, (ii) unwashed rice char, (iii) acetone/water washed rice char, and (iv) the wash water of the two rice chars produced at 200 and 300 °C via hydrothermal carbonization (HTC). Furthermore, genetically modified strains, where the green fluorescent protein (GFP) gene sequence is linked to a reporter gene central in specific anti-stress regulations, were also exposed to these matrices. Transgenic worms exposed to hydrochars showed very weak, if any, fluorescence, and expression of the associated RNAs related to stress response and biotransformation genes was surprisingly downregulated. Similar patterns were also found for the raw rice husk. It is hypothesized that an unidentified chemical trigger exists in the rice husk, which is not destroyed during the HTC process. Therefore, the use of GFP transgenic nematode strains cannot be recommended as a general rapid monitoring tool for farmers treating their fields with artificial char. However, it is hypothesized that the observed reduced transcriptional response with the subsequent lack of energy-consuming stress response is an energy-saving mechanism in the exposed nematodes. If this holds true in future studies, this finding opens the window to an innovative new field of stress ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrafioti E, Bouras G, Kalderis D, Diamadopoulos E (2013) Biochar production by sewage sludge pyrolysis. J Anal Appl Pyrolysis 101:72–78. doi:10.1016/j.jaap.2013.02.010

    Article  CAS  Google Scholar 

  • Arzuaga X, Elskus A (2010) Polluted-site killifish (Fundulus heteroclitus) embryos are resistant to organic pollutant-mediated induction of CYP1a activity reactive oxygen species, and heart deformities. Environ Toxicol Chem 29:676–682. doi:10.1002/etc.68

    Article  CAS  Google Scholar 

  • Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18. doi:10.1007/s11104-010-0464-5

    Article  CAS  Google Scholar 

  • Baberschke N, Steinberg CEW, Saul N (2015) Low concentrations of dibromoacetic acid and N-nitrosodimethylamine induce several stimulatory effects in the invertebrate model Caenorhabditis elegans. Chemosphere 124:122–128. doi:10.1016/j.chemosphere.2014.12.002

    Article  CAS  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    CAS  Google Scholar 

  • Castell JV, Donato MT, Gómez-Lechón MJ (2005) Metabolism and bioactivation of toxicants in the lung. The in vitro cellular approach. Exp Toxicol Pathol 57:189–204. doi:10.1016/j.etp.2005.05.008

    Article  CAS  Google Scholar 

  • Chakrabarti S, Kern J, Menzel R, Steinberg CEW (2011) Selected natural humic materials induce and char substrates repress a gene in Caenorhabditis elegans homolog to human anticancer P53. Ann Environ Sci 5:1–6

    CAS  Google Scholar 

  • Coleman DC (1994) The microbial loop concept as used in terrestrial soil ecology studies. Microb Ecol 28:245–250. doi:10.1007/BF00166814

    Article  CAS  Google Scholar 

  • Diakité M, Paul A, Jäger C, Pielert J, Mumme J (2013) Chemical and morphological changes in hydrochars derived from microcrystalline cellulose and investigated by chromatographic, spectroscopic and adsorption techniques. Bioresour Technol 150:98–105. doi:10.1016/j.biortech.2013.09.129

    Article  Google Scholar 

  • Fisher MA, Oleksiak MF (2007) Convergence and divergence in gene expression among natural populations exposed to pollution. BMC Genomics 8:108. doi:10.1186/1471-2164-8-108

    Article  Google Scholar 

  • Glaser B, Haumaier L, Guggenberger G, Zech W (2001) The 'Terra Preta' phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88:37–41. doi:10.1007/s001140000193

    Article  CAS  Google Scholar 

  • Harris TW, Antoshechkin I, Bieri T (2010) Wormbase: a comprehensive resource for nematode research. Nucleic Acids Res 38:D463–D467. doi:10.1093/nar/gkp952

    Article  CAS  Google Scholar 

  • Höss S, Menzel R, Gessler F, Nguyen HT, Jehle JA, Traunspurger W (2013) Effects of insecticidal crystal proteins (Cry proteins) produced by genetically modified maize (Bt maize) on the nematode Caenorhabditis elegans. Environ Pollut 178:147–151. doi:10.1016/j.envpol.2013.03.002

    Article  Google Scholar 

  • Ju J, Ruan Q, Li X, Liu R, Li Y, Pu Y, Yin L, Wang D (2013) Neurotoxicological evaluation of microcystin-LR exposure at environmental relevant concentrations on nematode Caenorhabditis elegans. Environ Sci Pollut Res 20:1823–1830. doi:10.1007/s11356-012-1151-2

    Article  CAS  Google Scholar 

  • Kalderis D, Kotti MS, Méndez A, Gascó G (2014) Characterization of hydrochars produced by hydrothermal carbonization of rice husk. Solid Earth 5:477–483. doi:10.5194/se-5-477-2014

    Article  Google Scholar 

  • Keiluweit M, Kleber M, Sparrow MA, Simoneit BRT, Prahl FG (2012) Solvent-extractable polycyclic aromatic hydrocarbons in biochar: influence of pyrolysis temperature and feedstock. Environ Sci Technol 46:9333–9341. doi:10.1021/es302125k

    Article  CAS  Google Scholar 

  • Kiontke K, Sudhaus W (2006) Ecology of Caenorhabditis species. WormBook: the online review of C elegans biology. 1–14 doi:10.1895/wormbook.1.37.1

  • Knicker H, Müller P, Hilscher A (2007) How useful is chemical oxidation with dichromate for the determination of "Black Carbon" in fire-affected soils? Geoderma 142:178–196. doi:10.1016/j.geoderma.2007.08.010

    Article  CAS  Google Scholar 

  • Kong CH (2008) Rice allelopathy. Allelopath J 22:261–273

    Google Scholar 

  • Kookana RS (2010) The role of biochar in modifying the environmental fate, bioavailability, and efficacy of pesticides in soils: a review. Aust J Soil Res 48:627–637. doi:10.1071/SR10007

    Article  CAS  Google Scholar 

  • Kosel M, Wild W, Bell A, Rothe M, Lindschau C, Steinberg CE, Schunck WH, Menzel R (2011) Eicosanoid formation by a cytochrome P450 isoform expressed in the pharynx of Caenorhabditis elegans. Biochem J 435:689–700. doi:10.1042/BJ20101942

    Article  CAS  Google Scholar 

  • Kubagawa HM, Watts JL, Corrigan C, Edmonds JW, Sztul E, Browse J, Miller MA (2006) Oocyte signals derived from polyunsaturated fatty acids control sperm recruitment in vivo. Nat Cell Biol 8:1143–1148. doi:10.1038/ncb1476

    Article  CAS  Google Scholar 

  • Li D, Hockaday WC, Masiello CA, Alvarez PJJ (2011) Earthworm avoidance of biochar can be mitigated by wetting. Soil Biol Biochem 43:1732–1737. doi:10.1016/j.soilbio.2011.04.019

    Article  CAS  Google Scholar 

  • Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, Titirici MM, Fühner C, Bens O, Kern J, Emmerich KH (2011) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2:71–106. doi:10.4155/bfs.10.81

    Article  CAS  Google Scholar 

  • Linhares CR, Lemke J, Auccaise R, Duó DA, Ziolli RL, Kwapinski W, Novotny EH (2012) Reproducing the organic matter model of anthropogenic dark earth of Amazonia and testing the ecotoxicity of functionalized charcoal compounds. Pesq Agrop Brasileira 47:693–698. doi:10.1590/S0100-204X2012000500009

    Article  Google Scholar 

  • Liu S, Saul N, Pan B, Menzel R, Steinberg CEW (2013) The non-target organism Caenorhabditis elegans withstands the impact of sulfamethoxazole. Chemosphere 93:2373–2380. doi:10.1016/j.chemosphere.2013.08.036

    Article  CAS  Google Scholar 

  • Mao JD, Johnson RL, Lehmann J, Olk DC, Neves EG, Thompson ML, Schmidt-Rohr K (2012) Abundant and stable char residues in soils: implications for soil fertility and carbon sequestration. Environ Sci Technol 46:9571–9576. doi:10.1021/es301107c

    Article  CAS  Google Scholar 

  • McGrath TE, Wooten JB, Geoffrey Chan W, Hajaligol MR (2007) Formation of polycyclic aromatic hydrocarbons from tobacco: the link between low temperature residual solid (char) and PAH formation. Food Chem Toxicol 45:1039–1050. doi:10.1016/j.fct.2006.12.010

    Article  CAS  Google Scholar 

  • Menzel R, Bogaert T, Achazi R (2001) A systematic gene expression screen of Caenorhabditis elegans cytochrome P450 genes reveals CYP35 as strongly xenobiotic inducible. Arch Biochem Biophys 395:158–168. doi:10.1006/abbi.2001.2568

    Article  CAS  Google Scholar 

  • Menzel R, Rödel M, Kulas J, Steinberg CEW (2005a) CYP35: xenobiotically induced gene expression in the nematode Caenorhabditis elegans. Arch Biochem Biophys 438:93–102. doi:10.1016/j.abb.2005.03.020

    Article  CAS  Google Scholar 

  • Menzel R, Stürzenbaum S, Bärenwaldt A, Kulas J, Steinberg CEW (2005b) Humic material induces behavioral and global transcriptional responses in the nematode Caenorhabditis elegans. Environ Sci Technol 39:8324–8332. doi:10.1021/es050884s

    Article  CAS  Google Scholar 

  • Menzel R, Swain SC, Hoess S, Claus E, Menzel S, Steinberg CEW, Reifferscheid G, Sturzenbaum S (2009) Gene expression profiling to characterize sediment toxicity – A pilot study using Caenorhabditis elegans whole genome microarrays. BMC Genomics 10:160. doi:10.1186/1471-2164-10-160

    Article  Google Scholar 

  • Meyer J, Di Giulio R (2002) Patterns of heritability of decreased EROD activity and resistance to PCB 126-induced teratogenesis in laboratory-reared offspring of killifish (Fundulus heteroclitus) from a creosote-contaminated site in the Elizabeth River, VA, USA. Mar Environ Res 54:621–626. doi:10.1016/S0141-1136(02)00170-8

    Article  CAS  Google Scholar 

  • Michałowicz J, Duda W (2007) Phenols - sources and toxicity. Pol J Environ Stud 16:347–362

    Google Scholar 

  • Mumme J, Eckervogt L, Pielert J, Diakité M, Rupp F, Kern J (2011) Hydrothermal carbonization of anaerobically digested maize silage. Bioresour Technol 102:9255–9260. doi:10.1016/j.biortech.2011.06.099

    Article  CAS  Google Scholar 

  • Norinaga K, Deutschmann O, Saegusa N, Hayashi J (2009) Analysis of pyrolysis products from light hydrocarbons and kinetic modeling for growth of polycyclic aromatic hydrocarbons with detailed chemistry. J Anal Appl Pyrolysis 86:148–160

    Article  CAS  Google Scholar 

  • Oleszczuk P, Jośko I, Kuśmierz M, Futa B, Wielgosz E, Ligeza S, Pranagal J (2014) Microbiological, biochemical and ecotoxicological evaluation of soils in the area of biochar production in relation to polycyclic aromatic hydrocarbon content. Geoderma 213:502–511. doi:10.1016/j.geoderma.2013.08.027

    Article  CAS  Google Scholar 

  • Oziolor EM, Bigorgne E, Aguilar L, Usenko S, Matson CW (2014) Evolved resistance to PCB- and PAH-induced cardiac teratogenesis, and reduced CYP1A activity in Gulf killifish (Fundulus grandis) populations from the Houston Ship Channel, Texas. Aquat Toxicol 150:210–219. doi:10.1016/j.aquatox.2014.03.012

    Article  CAS  Google Scholar 

  • Pelkonen O, Nebert DW (1982) Metabolism of polycyclic aromatic hydrocarbons: etiologic role in carcinogenesis. Pharmacol Rev 34:189–222

    CAS  Google Scholar 

  • Pellera FM, Giannis A, Kalderis D, Anastasiadou K, Stegmann R, Wang JY, Gidarakos E (2012) Adsorption of Cu(II) ions from aqueous solutions on biochars prepared from agricultural by-products. J Environ Manag 96:35–42. doi:10.1016/j.jenvman.2011.10.010

    Article  CAS  Google Scholar 

  • Richardson SD, Plewa MJ, Wagner ED, Schoeny R, DeMarini DM (2007) Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutat Res 636:178–242. doi:10.1016/j.mrrev.2007.09.001

    Article  CAS  Google Scholar 

  • Roh JY, Choi J (2011) Cyp35a2 gene expression is involved in toxicity of fenitrothion in the soil nematode Caenorhabditis elegans. Chemosphere 84:1356–1361. doi:10.1016/j.chemosphere.2011.05.010

    Article  CAS  Google Scholar 

  • Saul N, Baberschke N, Chakrabarti S, Stürzenbaum SR, Lieke T, Menzel R, Jonáš A, Steinberg CE (2014) Two organobromines trigger lifespan, growth, reproductive and transcriptional changes in Caenorhabditis elegans. Environ Sci Pollut Res 21:10419–10431. doi:10.1007/s11356-014-2932-6

    Article  CAS  Google Scholar 

  • Schuler LJ, Landrum PF, Lydy MJ (2004) Time-dependent toxicity of fluoranthene to freshwater invertebrates and the role of biotransformation on lethal body residues. Environ Sci Technol 38:6247–6255. doi:10.1021/es049844z

    Article  CAS  Google Scholar 

  • Sevilla M, Maciá-Agulló JA, Fuertes AB (2011) Hydrothermal carbonization of biomass as a route for the sequestration of CO2: chemical and structural properties of the carbonized products. Biomass Bioenergy 35:3152–3159. doi:10.1016/j.biombioe.2011.04.032

    Article  CAS  Google Scholar 

  • Sørensen JG, Nielsen MM, Kruhøffer M, Justesen J, Loeschcke V (2005) Full genome gene expression analysis of the heat stress response in Drosophila melanogaster. Cell Stress Chaperones 10:312–328. doi:10.1379/CSC-128R1.1

    Article  Google Scholar 

  • Strange K, Christensen M, Morrison R (2007) Primary culture of Caenorhabditis elegans developing embryo cells for electrophysiological, cell biological and molecular studies. Nat Protoc 2:1003–1012. doi:10.1038/nprot.2007.143

    Article  CAS  Google Scholar 

  • Tawe WN, Eschbach ML, Walter RD, Henkle-Dührsen K (1998) Identification of stress-responsive genes in Caenorhabditis elegans using RT-PCR differential display. Nucleic Acids Res 26:1621–1627. doi:10.1093/nar/26.7.1621

    Article  CAS  Google Scholar 

  • Thion C, Cébron A, Beguiristain T, Leyval C (2012) PAH biotransformation and sorption by Fusarium solani and Arthrobacter oxydans isolated from a polluted soil in axenic cultures and mixed co-cultures. Int Biodeterior Biodegrad 68:28–35. doi:10.1016/j.ibiod.2011.10.012

    Article  CAS  Google Scholar 

  • Titirici MM, Thomas A, Yu SH, Müller JO, Antonietti M (2007) A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization. Chem Mater 19:4205–4212. doi:10.1021/cm0707408

    Article  CAS  Google Scholar 

  • Wang W, Yang S, Hunsinger GB, Pienkos PT, Johnson DK (2014) Connecting lignin-degradation pathway with pre-treatment inhibitor sensitivity of Cupriavidus necator. Front Microbiol 5:247. doi:10.3389/fmicb.2014.00247

    Google Scholar 

  • Wiedner K, Rumpel C, Steiner C, Pozzi A, Maas R, Glaser B (2013) Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and hydrothermal carbonization) of agro-industrial biomass on a commercial scale. Biomass Bioenergy 59:264–278. doi:10.1016/j.biombioe.2013.08.026

    Article  CAS  Google Scholar 

  • Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H, Xiong Z, Que H, Xie Y, Holland PW, Paps J, Zhu Y, Wu F, Chen Y, Wang J, Peng C, Meng J, Yang L, Liu J, Wen B, Zhang N, Huang Z, Zhu Q, Feng Y, Mount A, Hedgecock D, Xu Z, Liu Y, Domazet-Lošo T, Du Y, Sun X, Zhang S, Liu B, Cheng P, Jiang X, Li J, Fan D, Wang W, Fu W, Wang T, Wang B, Zhang J, Peng Z, Li Y, Li N, Wang J, Chen M, He Y, Tan F, Song X, Zheng Q, Huang R, Yang H, Du X, Chen L, Yang M, Gaffney PM, Wang S, Luo L, She Z, Ming Y, Huang W, Zhang S, Huang B, Zhang Y, Qu T, Ni P, Miao G, Wang J, Wang Q, Steinberg CE, Wang H, Li N, Qian L, Zhang G, Li Y, Yang H, Liu X, Wang J, Yin Y, Wang J (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:49–54. doi:10.1038/nature11413

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study derived from cooperation between the ATB Potsdam and the Technological Educational Institute of Crete, both embedded in the EU COST Action TD1107 “Biochar as option for sustainable resource management.” The authors are very grateful to Christian Steinberg for his initiative and support to this study and to Ralph Menzel, Humboldt-Universität zu Berlin, for providing the Pcyp35A3::GFP strain. We acknowledge two anonymous reviews, helpful comments given by Markus Hecker on an earlier draft of the manuscript, and the final proofreading by Judy Libra. Furthermore, the authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Kern.

Additional information

Responsible editor: Markus Hecker

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

(DOCX 573 kb)

Figure S2

(DOCX 369 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakrabarti, S., Dicke, C., Kalderis, D. et al. Rice husks and their hydrochars cause unexpected stress response in the nematode Caenorhabditis elegans: reduced transcription of stress-related genes. Environ Sci Pollut Res 22, 12092–12103 (2015). https://doi.org/10.1007/s11356-015-4491-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4491-x

Keywords

Navigation