Skip to main content

Advertisement

Log in

Pollution due to hazardous glass waste

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Pollution resulting from hazardous glass (HG) is widespread across the globe, both in terms of quantity and associated health risks. In waste cathode ray tube (CRT) and fluorescent lamp glass, mercury and lead are present as the major pollutants. The current review discusses the issues related to quantity and associated risk from the pollutant present in HG and proposes the chemical, biological, thermal, hybrid, and nanotechniques for its management. The hybrid is one of the upcoming research models involving the compatible combination of two or more techniques for better and efficient remediation. Thermal mercury desorption starts at 100 °C but for efficient removal, the temperature should be >460 °C. Involvement of solar energy for this purpose makes the research more viable and ecofriendly. Nanoparticles such as Fe, Se, Cu, Ni, Zn, Ag, and WS2 alone or with its formulation can immobilize heavy metals present in HG by involving a redox mechanism. Straight-line equation from year-wise sale can provide future sale data in comparison with lifespan which gives future pollutant approximation. Waste compact fluorescent lamps units projected for the year 2015 is 9,300,000,000 units and can emit nearly 9,300 kg of mercury. On the other hand, CRT monitors have been continuously replaced by more improved versions like liquid crystal display and plasma display panel resulting in the production of more waste. Worldwide CRT production was 83,300,000 units in 2002 and can approximately release 83,000 metric tons of lead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahluwalia PK, Nema AK (2006) Multi-objective reverse logistics model for integrated computer waste management. Waste Manage Res 24:514–527

    Google Scholar 

  • Ajmal M, Rifaqt AK, Siddiqui BA (1995) Adsorption studies and removal of dissolved metals using pyrolusite as adsorbent. Environ Monit Ass 38:25–35

    CAS  Google Scholar 

  • Al-Garni SM, Ghanem KM, Ibrahim AS (2010) Biosorption of mercury by capsulated and slime layer forming Gram nagative bacilli from an aqueous solution. African J Biotech 9:6413–6421

    CAS  Google Scholar 

  • Al-Qahtani KM (2012) Biosorption of Cd+2 and Pb+2 on Cyperus laevigatus: application of factorial design analysis. Life Sci J 9:860–868

    Google Scholar 

  • Ambashta RD, Sillanpaa M (2010) Water purification using magnetic assistance: a review. J Hazard Mater 180:38–49

    CAS  Google Scholar 

  • Anderson CG, Twidwell LG (2008). The alkaline sulfide hydrometallurgical separation, recovery and fixation of tin, arsenic, antimony, mercury and gold. South Afric Instit Min and Metalur. pp 121–132

  • Andreola F, Barbieri L, Corradi A, Lancellotti I, Falcone R, Hreglich S (2005a) Glass-ceramics obtained by the recycling of end of life cathode ray tubes glasses. Waste Manage 25:183–189

    CAS  Google Scholar 

  • Andreola F, Barbieri L, Corradi A, Lancellotti I (2005b) Cathode ray tubes recycling: an example of clean technology. Waste Manage Res 23:314–321

    CAS  Google Scholar 

  • Andreola F, Barbieri L, Karamanova E, Lancellotti I, Pelino M (2008) Recycling of CRT panel glass as fluxing agent in the porcelain stoneware tile production. Ceram Int 34:1289–1295

    CAS  Google Scholar 

  • Anjum NA, Ahmad I, Valega M, Pacheco M, Figueira E, Duarte AC, Pereira E (2011) Impact of seasonal fluctuations on the sediment-mercury, its accumulation and partitioning in Halimione portulacoides and Juncus maritimus collected from Ria de Aveiro Coastal Lagoon (Portugal). Water, Air, Soil Pollut 222:1–15

    CAS  Google Scholar 

  • Arulrajah A, Ali M, Piratheepan J, Bo M (2013) Geotechnical performance of recycled glass-waste rock blends in footpath bases. J Mater Civ Eng 25:653–661

    Google Scholar 

  • Arwidsson Z, Allard B (2009) Remediation of metal-contaminated soil by organic metabolites from fungi II-metal redistribution. Water Air Soil Pollut 207:5–18

    Google Scholar 

  • Aucott M, McLinden M, Winka M (2003) Release of mercury from broken fluorescent bulbs. J Air Waste Manag Assoc 53:143–151

    CAS  Google Scholar 

  • Azhar N, Ashraf MY, Hussain M, Hussain F (2006) Phytoextraction of lead (Pb) by EDTA application through sunflower (Helianthus annuus L.) cultivation: seedling growth studies. Pak J Bot 38:1551–1560

    Google Scholar 

  • Baba AA, Adekola FA, Atata RF, Ahemad RN, Panda S (2011) Bioleaching of Zn(II) and Pb(II) from Nigerian sphalerite and galena ores by mixed culture of acidophilic bacteria. Trans Nonf Met Soc Chi 21:2535–2541

    CAS  Google Scholar 

  • Balcar GP, Dunkirk NY (1997). Glass beads having improved fracture toughness. US patent number 5674616

  • Barbosa FJ, Tanus-Santos JE, Gerlach RF, Parsons PJ (2005) A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. Environ Health Perspect 113:1669–1674

    CAS  Google Scholar 

  • Barkay T, Susan MM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384

    CAS  Google Scholar 

  • Barrer RM, Whiteman JL (1967) Mercury uptake in various cationic forms of several zeolites. J Chem Soc A Inorg Phys Theor 13:19–25

    Google Scholar 

  • Bayat B, Sari B (2010a) Bioleaching of dewatered metal plating sludge by Acidithiobacillus ferrooxidans using shake flask and completely mixed batch reactor. African J Biotechnol 9:7504–7512

    CAS  Google Scholar 

  • Bayat B, Sari B (2010b) Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge. J Hazard Mater 174:763–769

    CAS  Google Scholar 

  • Bernardo E, Albertini F (2006) Glass foams from dismantled cathode ray tubes. Ceram Int 32:603–608

    CAS  Google Scholar 

  • Bernardo E, Castellan R, Hreglich S, Lancellotti I (2006) Sintered sanidine glass ceramics from industrial wastes. J Eur Ceram Soc 26:3335–3341

    CAS  Google Scholar 

  • Bernardo E, Scarinci G, Hreglich S (2003) Mechanical properties of metal–particulate lead–silicate glass matrix composites obtained by means of powder technology. J Eur Ceram Soc 23:1819–1827

    CAS  Google Scholar 

  • Bernardo E, Scarinci G, Hreglich S (2005) Foam glass as a way of recycling glasses from cathode ray tubes. Glass Sci Technol 8:7–11

    Google Scholar 

  • Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217

    CAS  Google Scholar 

  • Bizily SP, Rugh CL, Summers AO, Meagher RB (1999) Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc Natl Acad Sci U S A 96:6808–6813

    CAS  Google Scholar 

  • Blaylock MJ, Elless MP, Huang JW, Dushenkov SM (1999) Phytoremediation of lead-contaminated soil at a New Jersey brownfield site. Remediation 9:93–101

    Google Scholar 

  • Blaylock MJ, Huang JW (1999) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 53–70

    Google Scholar 

  • Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 53–70

    Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Google Scholar 

  • Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335–1351

    CAS  Google Scholar 

  • Bower J, Savage KS, Weinman B, Barnett MO, Hamilton WP, Harper WF (2008) Immobilization of mercury by pyrite (FeS2). Environ Pollut 156:504–514

    CAS  Google Scholar 

  • Brain J (1990) From cups to CAD: a history of glass with CRTs in mind. Inform Display 6:12–15

    Google Scholar 

  • Brandl H, Bosshard R, Wegmann M (2001) Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy 59:319–326

    CAS  Google Scholar 

  • Brenni P (2007) Uranium glass and its scientific uses. Bull Sci Inst Soc 92:34–39

    Google Scholar 

  • Busto Y, Cabrera X, Tack FMG, Verloo MG (2011) Potential of thermal treatment for decontamination of mercury containing wastes from chlor-alkali industry. J Hazard Mater 186:114–118

    CAS  Google Scholar 

  • Cabrejo E, Phillips E (2010). In situ remediation and stabilization technologies for mercury in clay soils. Student summer internship technical report, DOE-FIU Science & Technology Workforce Development Program, U.S. Department of Energy

  • Carpi A (1997) Mercury from combustion sources: a review of the chemical species emitted and their transport in the atmosphere. Water Air Soil Pollut 98:241–245

    CAS  Google Scholar 

  • Chang T, Yen J (2006) On-site mercury-contaminated soils remediation by using thermal desorption technology. J Hazard Mater 128:208–217

    CAS  Google Scholar 

  • Chatterjee S, Kumar K (2009) Effective electronic waste management and recycling process involving formal and non-formal sectors. Internat J Physical Sci 4:893–905

    CAS  Google Scholar 

  • Cheikh M, Magnin JP, Gondrexon N, Willisn J, Hassen A (2010) Zinc and lead leaching from contaminated industrial waste sludges using coupled processes. Environ Technol 31:1577–1585

    CAS  Google Scholar 

  • Chen A, Dietrich KN, Huo X, Ho SM (2011) Developmental neurotoxicants in E waste: an emerging health concern. Environ Health Perspect 119:431–433

    Google Scholar 

  • Chen C, Leea H, Younga KL, Yuea PL, Wong A, Taob T, Choib KK (2002) Glass recycling in cement production—an innovative approach. Waste Manage 22:747–753

    CAS  Google Scholar 

  • Chen M, Zhang F-S, Zhu J (2009) Lead recovery and the feasibility of foam glass production from funnel glass of dismantled cathode ray tube through pyrovacuum process. J Hazard Mater 161:1109–1113

    CAS  Google Scholar 

  • Chen Y (2010) Status and trend of the lighting industry. Zhejiang Zhaoming Dianqi Xinxi 11:12–13 (in Chinese)

    Google Scholar 

  • Cheng TW, Huang MZ, Tzeng CC, Cheng KB, Ueng TH (2007) Production of coloured glass–ceramics from incinerator ash using thermal plasma technology. Chemosphere 68:1937–1945

    CAS  Google Scholar 

  • Clarkson TW (1993) Mercury: major issues in environmental health. Environ Health Perspect 100:31–38

    CAS  Google Scholar 

  • Conrad K, Hansen HCB (2007) Sorption of zinc and lead on coir. Biores Technol 98:89–97

    CAS  Google Scholar 

  • Coolidge AS (1927) The adsorption of mercury vapor by charcoal. J American Chemical Society 49:1949–1952

    CAS  Google Scholar 

  • Corcoran CH (2001). Communication in Western Electronic Product Stewardship Initiative (WEPSI) Multi-Stakeholder Meeting 3, Portland, OR, USA

  • CPCB (2008). Technical guidelines for environmentally sound mercury management in FL Sector Central Pollution Control Board, Delhi. www.cpcb.nic.in

  • Culver A (2008). Mercury content in lamps. Conference Presentation. EBB Conference. Mercury Containing Lamps under the Spotlight. Brussels. Available at: http://zeromercury.org/EU_developments/MercuryContent_in_Lamps.GPI.Brussels.062708.pdf

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    CAS  Google Scholar 

  • Czako M, Feng X, He Y, Liang D, Marton L (2006) Transgenic Spartina alterniflora for phytoremediation. Environ Geochem Health 28:103–110

    CAS  Google Scholar 

  • Dastoor AP, Larocque Y (2004) Global circulation of atmospheric mercury: a modeling study. Atmos Environ 38:147–161

    CAS  Google Scholar 

  • Deng L, Sua Y, Sua H, Wanga X, Zhua X (2007) Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. J Hazard Mater 143:220–225

    CAS  Google Scholar 

  • Dermont G, Bergeron M, Mercier G, Richer-Lafleche M (2008a) Soil washing for metal removal: a review of physical/chemical technologies and field applications. J Hazard Mater 152:1–31

    CAS  Google Scholar 

  • Dermont G, Bergeron M, Mercier G, Richer-Lafleche M (2008b) Metal-contaminated soils: remediation practices and treatment technologies. Pract Period Hazard Tox Radioact Waste Manage 12:188–210

    CAS  Google Scholar 

  • Dillon P (1998). Potential markets for CRTs and plastics from electronics demanufacturing: an initial scoping report. Chelsea Center for Recycling and Economic Development: Chelsea. pp 1–2

  • Disfani MM, Arulrajah A, Ali M, Bo M (2011a) Fine recycled glass: a sustainable alternative to natural aggregates. Internat J Geotech Engineer 12:255–266

    Google Scholar 

  • Disfani MM, Arulrajah A, Bo MW, Hankour R (2011b) Recycled crushed glass in road work applications. Waste Manag 31:2341–2351

    CAS  Google Scholar 

  • Disfani MM, Arulrajah A, Bo MW, Sivakugan N (2012) Environmental risks of using recycled crushed glass in road applications. J Cleaner Production 20:170–179

    Google Scholar 

  • Dondi M, Guarini G, Raimondo M, Zanelli C (2009) Recycling PC and TV waste glass in clay bricks and roof tiles. Waste Manage 29:1945–1951

    CAS  Google Scholar 

  • Duff JT (2012) An examination into the use of compact fluorescent lamps in the domestic environment. J Sust Eng Des 7:1–12

    Google Scholar 

  • Durga DK, Veeraiah N (2003) Role of manganese ions on the stability of ZnF2–P2O5–TeO2 glass system by the study of dielectric dispersion and some other physical properties. J Phys Chem of Solids 64:133–146

    CAS  Google Scholar 

  • Dushenkov V, Kumar PBAN, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245

    CAS  Google Scholar 

  • Ehrlich HL (1997) Microbes and metals. Appl Microbiol Biotechnol 48:687–692

    CAS  Google Scholar 

  • Elliott HA, Shastri NL (1999) Extractive decontamination of metal-polluted soils using oxalate. Water Air Soil Pollut 110:335–346

    CAS  Google Scholar 

  • Feng Q, Lin Q, Gong F, Sugita S, Shoya S (2004) Adsorption of lead and mercury by rice husk ash. J Colloid Interface Sci 278:1–8

    CAS  Google Scholar 

  • Flora SJS, Flora G, Saxena G (2006) Environmental occurrence, health effects and management of lead poisoning. In: Cascas SB, Sordo J (eds) Lead chemistry, analytical aspects, environmental impacts and health effects. Elsevier, Netherlands, pp 158–228

    Google Scholar 

  • Fox B, Walsh CT (1982) Mercuric reductase: purification and characterisation of a transposon-encoded flavoprotein containing an oxidation-reduction active disulfide. J Biol Chem 257:2498–2503

    CAS  Google Scholar 

  • Fuhrmann M, Melamed D, Kalb PD, Adams JW, Milian LW (2002) Sulfur polymer solidification/stabilization of elemental mercury waste. Waste Manage 22:327–333

    CAS  Google Scholar 

  • George C, Azwell DE, Adams PA, Rao GVN, Averett DE (1995) Evaluation of steam as a sweep gas in low temperature thermal desorption processes used for contaminated soil clean up. Waste Manage 15:407–416

    CAS  Google Scholar 

  • Geskin ES, Goldenberg B, Caudill R (2002). Development of advanced CRT disassembly technology. In: Proceeding of the international symposium on electronics and the environment. pp. 249–253

  • Ghorishi B, Gullett BK (1998). An experimental study on mercury sorption by activated carbons and calcium hydroxide. Acurex Environmental Corp., Research Triangle Park, NC; Environmental Protection Agency, Research Triangle Park, NC. Air Pollution Prevention and Control Div. EPA-68-D4-0005; EPA/600/A-98/011, 99 795–808

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3:1–18

    Google Scholar 

  • Gomez-Serrano V, Macias-Garcia A, Espinosa-Mansilla A, Valenzuela-Calahorro A (1998) Adsorption of mercury, cadmium and lead from aqueous solution on heat-treated and sulphurized activated carbon. Water Res 32:1–4

    CAS  Google Scholar 

  • Grcman H, Velinkonja-Bolta S, Vodnik D, Lestan D (2001) EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant Soil 235:105–114

    CAS  Google Scholar 

  • Grcman H, Vodnik D, Velinkonja-Bolta S, Lestan D (2003) Ethylenediaminedisussuccinate as a new chelate for environmentally safe enhanced lead phytoextraction. J Environ Qual 32:500–506

    CAS  Google Scholar 

  • Gregory J, Nadeau M-C, Kirchain R (2009) Evaluating the economic viability of a material recovery system: the case of cathode ray tube glass. Environ Sci Technol 43:9245–9251

    CAS  Google Scholar 

  • Gupta RK (2007). E-waste recycling and health effects: a review. Centre for Education and Communication—working paper (http://cec-india.org/images/stories/pdf/CECWork_paper/e_waste_report.pdf)

  • Gupta VK, Rastogi A (2008) Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies. J hazard Mater 152:407–441

    CAS  Google Scholar 

  • Ha NTH, Sakakibara M, Sano S, Nhuan MT (2011) Uptake of metals and metalloids by plants growing in a lead–zinc mine area Northern Vietnam. J Hazard Mater 186:1384–1391

    Google Scholar 

  • Hafshejani MK, Khandani F, Heidarpour R, Sedighpour A, Fuladvand H, Shokuhifard R, Arad A (2012) Study of the health threatening mercury effective parameters for its removal from the aqueous solutions by using activated carbons. Life Sci J 9:1789–1791

    Google Scholar 

  • Hall MJ (1998) Kaolinite sorbent for the removal of heavy metals from incinerated lubricating oils. Project, University of Texas

  • Harikumar PS, Dhruvan A, Sabna V, Babitha A (2011) Study on the leaching of mercury from compact fluorescent lamps using stripping voltammetry. J Toxicol Environ Health Sci 3:8–13

    CAS  Google Scholar 

  • Hartenstein R, Neuhauser EF, Collier J (1980) Accumulation of heavy metals in the earthworm E. foetida. J Environ Qual 9:23–26

    CAS  Google Scholar 

  • He W, Li G, Ma X, Wang H, Huang J, Xu M, Huang C (2006) WEEE recovery strategies and the WEEE treatment status in China. J Hazard Mater 136:502–512

    CAS  Google Scholar 

  • Heaton ACP, Rugh CL, Wang NJ, Meagher RB (1998) Phytoremediation of mercury and methylmercury-polluted soils using genetically engineered plants. J Soil Cont 7:497–509

    CAS  Google Scholar 

  • Henry JR (2000) An overview of the phytoremediation of lead and mercury, National Network of Environmental Management Studies (NNEMS) Status Report. U.S. EPA Office of Solid Waste and Emergency Response and Technology Innovation, Washington, DC

    Google Scholar 

  • Hildenbrand VD, Denissen CJM (2000) Interactions of thin oxide films with a low-pressure mercury discharge. Thin Solid Films 371:295–302

    CAS  Google Scholar 

  • Holan ZR, Volesky B (1994) Biosorption of lead and nickel by biomass of marine algae. Biotechnol Bioeng 43:1001–1009

    CAS  Google Scholar 

  • Hong KJ, Tokunaga S, Kajiuchi T (2000) Extraction of heavy metals from MSW incinerator fly ashes by chelating agents. J Hazard Mater 75:57–73

    CAS  Google Scholar 

  • Hong PKA, Li C, Banerji SK, Wang Y (2002) Feasibility of metal recovery from soil using DTPA and its biostability. J Hazard Materi 94:253–272

    CAS  Google Scholar 

  • Hsu E, Kuo C-M (2005) Recycling rates of waste home appliances in Taiwan. Waste Manage 25:53–65

    CAS  Google Scholar 

  • Hu Y, Cheng H (2012) Mercury risk from fluorescent lamps in China: current status and future perspective. Environ Internat 44:141–150

    CAS  Google Scholar 

  • Huang CC, Chen MW, Hsieh JL, Lin WH, Chen PC, Chien LF (2006) Expression of mercuric reductase from Bacillus megaterium MB1 in eukaryotic microalga Chlorella sp. DT: an approach for mercury phytoremediation. Appl Microbiol Biotechnol 72:197–205

    CAS  Google Scholar 

  • Huang JW, Chen J, Berti WR, Cunningham SD (1997) Phytoremediation of lead contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805

    CAS  Google Scholar 

  • Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134:75–84

    CAS  Google Scholar 

  • Huang YT, Hseu ZY, Hsi HC (2011) Influences of thermal decontamination on mercury removal, soil properties, and repartitioning of coexisting heavy metals. Chemosphere 84:1244–1249

    CAS  Google Scholar 

  • ICER (2004). Materials recovery from waste cathode ray tubes (CRTs). In: The waste and resource action programme, UK. http://www.icer.org.uk/IcerMaterialsRecoveryFromCRTs.pdf

  • ICF Incorporated Fairfax (1999) General background document on cathode ray tube glass-to-glass recycling. ICF Incorporated Fairfax VA Office of Solid Waste US Environmental Protection Agency

  • Imteaz MA, Ali MM, Arulrajah A (2012) Possible environmental impacts of recycled glass used as a pavement base material. Waste Manag Res 30:917–921

    Google Scholar 

  • Inbaraj BS, Sulochana N (2006) Mercury adsorption on a carbon sorbent derived from fruit shell of Terminalia catappa. J Hazard Mater 133:283–290

    CAS  Google Scholar 

  • INSA (2011). A position paper. Hazardous metals and minerals pollution in India: Sources, toxicity and management. Indian National Science Academy, New Delhi. http://insaindia.org/pdf/Hazardous_Metals.pdf

  • Ireland MP (1979) Metal accumulation by the earthworms Lumbricus rubellus, Dendrobaena veneta and Eiseniella tetraedra living in heavy metal polluted sites. Environ Pollut 19:201–206

    CAS  Google Scholar 

  • Ireland MP (1983) Heavy metals uptake in earthworms; earthworm ecology. Chapman & Hall, London

    Google Scholar 

  • Issitt DM (2005). Substance used in making of coloured glass. http://1st-glass.1st-things.com/articles/glasscolouring.html

  • Jalali R, Ghafourian H, Asef Y, Davarpanah SJ, Sepehr S (2002) Removal and recovery of lead using nonliving biomass of marine algae. J Hazard Mater 92:253–262

    CAS  Google Scholar 

  • Jang M, Hong SM, Park JK (2005) Characterization and recovery of mercury from spent fluorescent lamps. Waste Manage 25:5–14

    CAS  Google Scholar 

  • Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Google Scholar 

  • Jefferies E (2006) E-wasted. Toys and gadgets become toxic junk thanks to the circuit bored. Worldwatch 19:21–25, Worldwatch Institute www.worldwatch.org

    Google Scholar 

  • Johnson NC, Manchester S, Sarin L, Gao Y, Kulaots I, Hurt RH (2008) Mercury vapor release from broken compact fluorescent lamps and in situ capture by new nanomaterial sorbents. Environ Sci Technol 42:5772–5778

    CAS  Google Scholar 

  • Kagi JHR (1991) Overview of metallothionein. Methods Enzymol 205:613–626

    CAS  Google Scholar 

  • Kannan N, Kanimozhi R, Xavier A (2010) Studies on the removal of mercury (II)-EDTA complex by coal and coal-flyash belends. Internat J Environ Pollut 30:719–724

    CAS  Google Scholar 

  • Karagiannidis A, Perkoulidis G, Papadopoulos A, Moussiopoulos N, Tsatsarelis T (2005) Characteristics of wastes from electric and electronic equipment in Greece: results of a field survey. Waste Manage Res 23:381–388

    Google Scholar 

  • Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117:1813–1831

    Google Scholar 

  • Kelly DJA, Budd K, Lefebvre DD (2007) Biotransformation of mercury in pH-stat cultures of eukaryotic freshwater algae. Arch Microbiol 187:45–53

    CAS  Google Scholar 

  • Kim D, Pertrisor IG, Yen TF (2005) Evaluation of biopolymer-modified concrete systems for disposal of cathode ray tube glass. J Air Waste Manage Assoc 55:961–969

    CAS  Google Scholar 

  • King P, Rakesh N, Beenalahari S, Kumar YP, Prasad VSRK (2007) Removal of lead from aqueous solution using Syzygium cumini L.: equilibrium and kinetic studies. J Hazard Mater 142:340–347

    CAS  Google Scholar 

  • Kiyono M, Sone Y, Nakamura R, Pan-Hou H, Sakabe K (2009) The Mer E protein encoded by transposon Tn21 is a broad mercury transporter in Escherichia coli. FEBS Lett 583:1127–1131

    CAS  Google Scholar 

  • Klasson KT, Koran LJ, Jr. Gates DD, Cameron PA (1998). Removal of mercury from solids using the potassium iodide/iodine leaching process. Oak Ridge National Laboratory, U.S. Department of Energy

  • Kocialkowski WZ, Diatta JB, Grzebisz W (1999) Evaluation of chelating agents as heavy metals extractants in agricultural soils under threat of contamination polish. J Environ Stud 8:149–154

    CAS  Google Scholar 

  • Komura I, Izaki K (1971) Mechanism of mercuric chloride resistance in microorganisms I. Vaporization of a mercury compound from mercuric chloride by multiple drug resistance strain of Escherichia coli. J Biochem 70:885–893

    CAS  Google Scholar 

  • Kos B, Lestan D (2003) Influence of a biodegradable ([S, S]-EDDS) and nondegradable (EDTA) chelate and hydrogel modified soil water sorption capacity on Pb phytoextraction and leaching. Plant Soil 253:403–411

    CAS  Google Scholar 

  • Kotnala RK (2009) New nanotechniques, ethical issues of nanotechnology. Nova Science, New York (Chapter 7). ISBN 978-1-60692-516-4

    Google Scholar 

  • Kucharski R, Zielonka U, Sas-Nowosielska A, Kuperberg JM, Worsztynowicz A, Szdzuj J (2005) A method of mercury removal from topsoil using low-thermal application. Environ Monit Assess 104:341–351

    CAS  Google Scholar 

  • Kumar J, Srivastava A, Singh VP (2011) EDTA enhanced phytoextraction of Pb by Indian mustard (Brassica juncea L.). Plant Sci Feed 1:160–166

    Google Scholar 

  • Kumar PBAN, Dushenkov S, Salt DE, Raskin I (1994) Crop Brassicas and phytoremediation—a novel environmental technology. Cruciferae Newsl Eucarpia 16:18–19

    Google Scholar 

  • Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    CAS  Google Scholar 

  • Kunkel AM, Seibert JJ, Elliott LJ, Ricci-Kelley KLE, Pope GA (2006) Remediation of elemental mercury using in situ thermal desorption (ISTD). Environ Sci Technol 40:2384–2389

    CAS  Google Scholar 

  • Lai HY, Chen ZS (2004) Effects of EDTA on solubility of cadmium, zinc, and lead and their uptake by rainbow pink and vetiver grass. Chemosphere 55:421–430

    CAS  Google Scholar 

  • Lai HY, Chen ZS (2005) The effect of EDTA on phytoextraction of single and combined metals-contaminated soils by rainbow pink. Chemosphere 60:1062–1071

    CAS  Google Scholar 

  • Lai HY, Chen ZS (2007) The effect of multi-dose EDTA application on the phytoextraction of Cd, Zn and Pb by rainbow pink (Dianthus chinensis) in contaminated soil. Desalination 210:236–247

    CAS  Google Scholar 

  • Lairaksa N, Moon AR, Makul N (2013) Utilization of cathode ray tube waste: encapsulation of PbO-containing funnel glass in Portland cement clinker. J Environ Manag 117:180–186

    CAS  Google Scholar 

  • Langford LJ, Ferner RE (1999) Toxicity of mercury. J Human Hypertension 13:651–656

    CAS  Google Scholar 

  • Lee C-H, Chang S-L, Wang K-M, Wen L-C (2007) Present status of the recycling of waste electrical and electronic equipment in Korea. Res Conserv Recycl 50:380–397

    Google Scholar 

  • Leonard TL, Taylor GE, Gustin MS, Fernandez GCJ (1998) Mercury and plants in contaminated soils: uptake, partitioning, and emission to the atmosphere. Environ Toxicol Chem 17:2063–2071

    CAS  Google Scholar 

  • Li X, Chang C, Kubota T, Qin C, Makino A, Inoue A (2008) Effect of Cr addition on the glass-forming ability, magnetic, mechanical and corrosion properties of (Fe0:76Si0:096b0:096p0:048)100-xCrx bulk glassy alloys. Mater Transac 49:2887–2890

    CAS  Google Scholar 

  • Liebert CA, Watson AL, Summers AO (2000) The quality of merC, a module of the Mer mosaic. J Mol Evol 51:607–622

    CAS  Google Scholar 

  • Lim S-R, Kang D, Ogunseitan OA, Schoenung JM (2013) Potential environmental impacts from the metals in incandescent, compact fluorescent lamp (CFL), and light-emitting diode (LED) bulbs. Environ Sci Technol 47:1040–1047

    CAS  Google Scholar 

  • Liu Y, Su G, Zhang B, Jiang G, Yan B (2011) Nanoparticle-based strategies for detection and remediation of environmental pollutants. Analyst (Cambridge, U K) 136:872–877

    CAS  Google Scholar 

  • Lloyd JR (2002) Bioremediation of metals; the application of micro-organisms that make and break minerals. Microbiol Today 29:67–69

    Google Scholar 

  • Luo CL, Shen ZG, Baker AJM, Li XD (2006a) A novel strategy using biodegradable EDDS for the chemically enhanced phytoextraction of soils contaminated with heavy metals. Plant Soil 285:67–80

    CAS  Google Scholar 

  • Luo CL, Shen ZG, Li XD, Baker AJM (2006b) Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS. Chemosphere 63:1773–1784

    CAS  Google Scholar 

  • Luo F, Liu Y, Li X, Xuan Z, Ma J (2007) Biosorption of lead ion by chemically modified biomass of marine brown alga Laminaria japonica. Chemosphere 64:1122–1127

    Google Scholar 

  • Luther L (2008). Compact fluorescent light bulbs (CFLs): issues with use and disposal. CRS report for congress.

  • Luz AP, Ribeiro S (2007) Use of glass waste as a raw material in porcelain stoneware tile mixtures. Ceramics Int 33:761–765

    CAS  Google Scholar 

  • Maddah SM, Moraghebi F (2013) The comparisons between Picea abies and Pinus sylvestris in respect of lead phytoremediation potential. Internat J Biosci 3:35–41

    CAS  Google Scholar 

  • Manousaki E, Kalogerakis N (2009) Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Environ Sci Pollut Res Int 16:844–854

    CAS  Google Scholar 

  • Marques B, Lillebo AI, Pereira E, Duarte AC (2011) Mercury cycling and sequestration in salt marshes sediments: an ecosystem service provided by Juncus maritimus and Scirpus maritimus. Environ Pollut 159:1869–1876

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Maschio S, Tonello G, Furlani E (2013) Recycling glass cullet from waste CRTs for the production of high strength mortars. J Waste Manag. doi:10.1155/2013/102519

    Google Scholar 

  • Massacci P, Piga L, Ferrini M (2000) Applications of physical and thermal treatment for the removal of mercury from contaminated materials. Miner Eng 13:963–967

    CAS  Google Scholar 

  • Matheickal JT, Yu Q (1996) Biosorption of lead from aqueous solutions by marine algae Ecklonia radiate. Water Sci Technol 34:1–7

    CAS  Google Scholar 

  • Matteucci F, Dondi M, Guarini G (2002) Effect of soda-lime glass on sintering and technological properties of porcelain stoneware tiles. Ceramics Internat 28:873–880

    CAS  Google Scholar 

  • Mattigod SV, Fryxell GE, Skaggs R, Parker KE (2006) Functionalized nanoporous ceramic sorbents for removal of mercury and other contaminants. NSTI-Nanotech 1:355–357

    CAS  Google Scholar 

  • McLellan GW, Shand EB (1984) Glass engineering handbook. McGraw-Hill, Inc

    Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    CAS  Google Scholar 

  • Mear F, Yot P, Cambon M, Ribes M (2006) The characterization of waste cathode-ray tube glass. Waste Manage 26:1468–1476

    CAS  Google Scholar 

  • Mear FO, Yot PG, Kolobov AV, Ribes M, Guimon G-M, Gonbeau D (2007) Local structure around lead, barium and strontium in waste cathode-ray tube glasses. J Non-Crystalline Solids 353:4640–4646

    CAS  Google Scholar 

  • Meers E, Hopgood M, Lesage E, Vervaeke P, Tack FMG, Verloo MG (2004) Enhanced phytoextraction: in search of EDTA alternatives. Int J Phytoremediat 6:95–109

    CAS  Google Scholar 

  • Meers E, Lesage E, Lamsal S, Hopgood M, Vervaeke P, Tack FMG, Verloo MG (2005) Enhanced phytoextraction: I. Effect of EDTA and citric acid on heavy metal mobility in a calcareous soil. Int J Phytoremediat 7:129–142

    CAS  Google Scholar 

  • Meers E, Qadir M, De-Caritat P, Tack F, Du-Laing G, Zia M (2009) EDTA-assisted Pb phytoextraction. Chemosphere 74:1279–1291

    Google Scholar 

  • Menad N (1999) Cathode ray tube recycling. Res Conserv Recycl 26:143–154

    Google Scholar 

  • Misra TK (1992) Bacterial resistance to inorganic mercury salts and organomercurials. Plasmid 27:4–16

    CAS  Google Scholar 

  • Mizuki C, Pitts G, Aanstoos T, Nichols S (1997). CRT disposition: an assessment of limitations and opportunities in reuse, refurbishment, and recycling. In: U.S. Proceedings of the 1997 I.E. International Symposium on Electronics and the Environment. 73–78

  • Monchamp A, Evans H, Nardone J, Wood S, Proch E, Wagner T (2001). Cathode ray tube manufacturing and recycling: analysis of industry survey. Electronic Industries Alliance Arlington, VA, USA

  • Monika JK (2010) E-waste management: as a challenge to public health in India. Indian J Community Med 35:382–385

    CAS  Google Scholar 

  • Monitor of the electronics recycling issues (2001) CRT glass to CRT glass recycling. In: Materials for the Future Foundation Issue #1, September 2001. http://www.epa.gov/epaoswer/non-hw/reduce/wstewise/pubs/g2gfinal.pdf

  • Morby AP, Hobman JL, Brown NL (1995) The role of cysteine residues in the transport of mercuric ions by the Tn501 MerT and MerP mercury-resistance proteins. Mol Microbiol 17:25–35

    CAS  Google Scholar 

  • Moreno FN, Anderson CWN, Stewart RB, Robinson BH, Ghomshei M, Meech JA (2005a) Induced plant uptake and transport of mercury in the presence of sulphur-containing ligands and humic acid. New Phytol 166:445–454

    CAS  Google Scholar 

  • Moreno FN, Anderson CWN, Stewart RB, Robinson BH, Nomura R, Ghomshei M, Meech JA (2005b) Effect of thioligands on plant–Hg accumulation and volatilisation from mercury-contaminated mine tailings. Plant Soil 275:233–246

    CAS  Google Scholar 

  • Moreno FN, Anderson CWN, Stewart RB, Robinson FN (2004) Phytoremediation of mercury-contaminated mine tailings by induced plant–mercury accumulation. Environ Pract 6:165–175

    Google Scholar 

  • Moreno-Jimenez E, Gamarra R, Carpena-Ruiz RO, Millan R, Pealosa JM, Esteban E (2006) Mercury bioaccumulation and phytotoxicity in two wild plant species of Almaden area. Chemosphere 63:1969–1973

    CAS  Google Scholar 

  • Morris M, Sams R, Gillis G, Helsel R, Alperin E, Geisler T, Groen A, Root D (1995) Bench and pilot-scale demonstration of thermal desorption for removal of mercury from the Lower East Fork Poplar Creek Floodplain soils CONF-950216-129. Martin Marietta Energy Systems, Oak Ridge, TN

    Google Scholar 

  • Mostaghel S, Samuelsson C (2010) Metallurgical use of glass fractions from waste electric and electronic equipment (WEEE). Waste Manag 30:140–144

    CAS  Google Scholar 

  • Mueller JR, Boehm MW, Drummond C (2012) Direction of CRT waste glass processing. Electron Recycl Ind Commun 32:1560–1565

    Google Scholar 

  • Mulligan CN, Kamali M (2003) Bioleaching of copper and other metals from low grade oxidized mining ores by Aspergillus niger. J Chem Technol Biotech 78:497–503

    CAS  Google Scholar 

  • Musson SE, Jang Y-C, Townsend TG, Chung I-H (2000) Characterization of lead leachability from cathode ray tubes using the toxicity characteristic leaching procedure. Environ Sci Technol 34:4376–4381

    CAS  Google Scholar 

  • Nagib S, Inoue K (2000) Recovery of lead and zinc from fly ash generated from municipal incineration plants by means of acid and/or alkaline leaching. Hydrometallurgy 56:269–292

    CAS  Google Scholar 

  • Naiya TK, Bhattacharya AK, Mandal S, Das SK (2009) The sorption of lead(II) ions on rice husk ash. J Hazard Mater 163:1254–1264

    CAS  Google Scholar 

  • Nakamura K, Hagimine M, Sakai M, Furukawa K (1999) Removal of mercury from mercury contaminated sediments using a combined method of chemical leaching and volatilization of mercury by bacteria. Biodegradation 10:443–444

    CAS  Google Scholar 

  • Nance P, Patterson J, Willis A, Foronda N, Dourson M (2012) Human health risks from mercury exposure from broken compact fluorescent lamps (CFLs). Regul Toxicol Pharmacol 62:542–552

    CAS  Google Scholar 

  • Nassar NN (2010) Rapid removal and recovery of Pb(II) from wastewater by magnetic nanoadsorbents. J Hazard Mater 184:538–546

    CAS  Google Scholar 

  • Navarro A, Caadas I, Martinez D, Rodriguez J, Mendoza J (2009) Application of solar thermal desorption to remediation of mercury-contaminated soils. Sol Energy 83:1405–1414

    CAS  Google Scholar 

  • Newmoa (2008). Northeast Waste Management Officials Association. mercury use in lighting. Factsheet. Northeast Waste Management Officials’ Association, Boston, USA. http://www.newmoa.org/prevention/mercury/imerc/FactSheets/lighting.cfm

  • Ngah WSW, Hanafia MAKM (2008) Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour Technol 99:3935–3948

    Google Scholar 

  • Nhapi I, Banadda N, Murenzi R, Sekomo CB, Wali UG (2011) Removal of heavy metals from industrial wastewater using rice husks. Open Environ Eng J 4:170–180

    CAS  Google Scholar 

  • Niinae M, Nishigaki K, Aoki K (2008) Removal of lead from contaminated soils with chelating agents. Mater Trans 49:2377–2382

    CAS  Google Scholar 

  • Nnorom IC, Osibanjo O (2009) Toxicity characterization of waste mobile phone plastics. J Hazard Mater 161:183–188

    CAS  Google Scholar 

  • Nnorom IC, Osibanjo O, Nnorom SO (2007) Achieving resource conservation in electronic waste management: a review of options available to developing countries. J Appl Sci 20:2918–2933

    Google Scholar 

  • Nnorom IC, Osibanjo O, Okechukwu K, Nkwachukwu O, Chukwuma RC (2010) Evaluation of heavy metal release from the disposal of waste computer monitors at an open dump. Internat J Environ Sci Dev 1:227–233

    Google Scholar 

  • Nnorom IC, Osibanjob O, Ogwuegbua MOC (2011) Global disposal strategies for waste cathode ray tubes. Resour Conserv Recycl 55:275–290

    Google Scholar 

  • Noon MS, Lee S-J, Cooper JS (2011) A life cycle assessment of end-of-life computer monitor management in the Seattle metropolitan region. Resour Conserv Recycl 57:22–29

    Google Scholar 

  • Nortemann B (2005) Biodegradation of chelating agents: EDTA, DTPA, PDTA, NTA, and EDDA, Chapter 8: biogeochemistry of chelating agents. In: Nowack B, VanBriesen JM (eds) ACS Symposium Series 910. American Chemical Society, Washington, D.C., pp pp 150–pp 169

    Google Scholar 

  • Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang C, Linehan JC, Matson DW, Penn RL, Driessen MD (2009) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39:1221–1230

    Google Scholar 

  • Ohki A, Iwashita A, Tanamachi S, Nakajima T, Takanashi H (2003) Removal of mercury from coal by mild pyrolysis and chelate extraction. Fuel Chem Division Preprints 48:354–355

    CAS  Google Scholar 

  • Ojea-Jimenez I, Lopez X, Arbiol J, Puntes V (2012) Citrate-coated gold nanoparticles smart scavengers for mercury(II) removal from polluted waters. ACS Nano 6:2253–2260

    CAS  Google Scholar 

  • Okada T, Yonezawa S (2013) Energy-efficient modification of reduction-melting for lead recovery from cathode ray tube funnel glass. Waste Manag 33:1758–1763

    CAS  Google Scholar 

  • Orumwense FFO (1996) Removal of lead from water by adsorption on a kaolinitic clay. J Chem Tech Biotech 65:63–69

    Google Scholar 

  • Otani Y, Kanaoka C, Emi H, Uchijima I, Nishino H (1998) Removal of mercury vapor from air with sulfur-impregnated adsorbents. Environ Sci Technol 22:708–711

    Google Scholar 

  • Oubagaranadin JU, Sathyamurthy N, Murthy ZVP (2007) Evaluation of Fuller’s earth for the adsorption of mercury from aqueous solutions: A comparative study with activated carbon. J Hazard Mater 142:165–174

    CAS  Google Scholar 

  • Ozer D, Asksu Z, Kutsal T, Caglar A (1994) Adsorption isotherms of lead(II) and chromium(VI) on Cladophora crispate. Environ Technol 15:439–448

    CAS  Google Scholar 

  • Pacholewska M (2004) Bioleaching of galena flotation concentrate. Physicochem Pro Min Process 38:281–290

    CAS  Google Scholar 

  • Paez-Hernandez ME, Aguilar-Arteaga K, Galan-Vidal CA, Palomar-Pardave M, Romero-Romo M, Ramirez-Silva MT (2005) Mercury ions removal from aqueous solution using an activated composite membrane. Environ Sci Technol 39:7667–7670

    CAS  Google Scholar 

  • Pant D (2009) Waste glass as absorbent for thin layer chromatography (TLC). Waste Manage 29:2040–2041

    CAS  Google Scholar 

  • Pant D (2013a) E-waste projection using life span and population statistics. Int J Life Cycle Assess 18:1465–1469

    Google Scholar 

  • Pant D (2013b). A review of electronic waste management microbial participation: a green technology. Int J Env Waste Manag. http://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijewm

  • Pant D, Joshi D, Upreti MK, Kotnala RK (2012) Chemical and biological extraction of metals present in E waste: a hybrid technology. Waste Manage 32:979–990

    CAS  Google Scholar 

  • Pant D, Singh P (2013) Chemical modification of waste glass from cathode ray tubes (CRTs) as low cost adsorbent. J Environ Chem Engineer 1:226–232

    CAS  Google Scholar 

  • Parham H, Zargar B, Shiralipour R (2012) Fast and efficient removal of mercury from water samples using magnetic iron oxide nanoparticles modified with 2-mercaptobenzothiazole. J Hazard Mater 205–206:94–100

    Google Scholar 

  • Parsons D (2006) The environmental impact of compact fluorescent lamps and incandescent lamps for Australian conditions. Environ Eng 7:8–14

    Google Scholar 

  • Pattnaik S, Reddy MV (2011) Heavy metals remediation from urban wastes using three species of earthworm (Eudrilus eugeniae, Eisenia fetida and Perionyx excavatus). J Environ Chem Ecotoxicol 3:345–356

    CAS  Google Scholar 

  • Pavasant P, Apiratikul R, Sungkhum V, Suthiparinyanont P, Wattanachira S, Marhaba TF (2006) Biosorption of Cu2+, Cd2+, Pb2+ and Zn2+ using dried marine green macroalga Caulerpa lentillifera. Biores Technol 97:2321–2329

    CAS  Google Scholar 

  • Pedroso ACS, Gomes LER, De Carvalho JMR (1994) Mercury removal from process sludge via hypochlorite leaching. Environ Technol 15:657–667

    CAS  Google Scholar 

  • Perez-Sanz A, Millan R, Sierra MJ, Alarcon R, Garcia P, Gil-Diaz M, Vazquez S, Lobo MC (2012) Mercury uptake by Silene vulgaris grown on contaminated spiked soils. J Environ Manage 95:233–237

    Google Scholar 

  • Perveen N, Hanif AM, Noureen SH, Ansari TM, Bhatti HN (2011) Phytoremediation of Pb (II) by Jasminum sambac. J Chem Society Pakistan 33:592–597

    CAS  Google Scholar 

  • Peters RW (1999) Chelant extraction of heavy metals from contaminated soils. J Hazard Mater 66:151–210

    CAS  Google Scholar 

  • Piao H, Bishop PL (2006) Stabilization of mercury-containing wastes using sulfide. Environ Pollut 139:498–506

    CAS  Google Scholar 

  • Podgorkova VN, Melnikov VG (1976) Effect of additions of copper on the strength properties of sintered metal-glass materials and method of its introduction. Powder Metall Met Ceram 15:898–900

    Google Scholar 

  • Ponder SM, Darab JG, Bucher J, Caulder D, Craig I, Davis L, Edelstein N, Mallouk TE (2001) Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chem Mater 13:479–486

    CAS  Google Scholar 

  • Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using nanoscale zerovalent iron. Environ Sci Technol 34:2564–2569

    CAS  Google Scholar 

  • Poon CS (2008) Management of CRT glass from discarded computer monitors and TV sets. Waste Manage 28:1499–1499

    CAS  Google Scholar 

  • Puschenreiter M, Stoger G, Lombi E, Horak O, Wenzel WW (2001) Phytoextraction of heavy metal contaminated soils with Thlaspi goesingense and Amaranthus hybridus: rhizosphere manipulation using EDTA and ammonium sulfate. J Plant Nutr Soil Sci 164:615–621

    CAS  Google Scholar 

  • Qu LY, Fu SZ, Liu L, An YM, Li M (2004) A study on the soil improvement polluted by mercury. J Guizhou Normal Univ (Nat Sci) 22:49–51 (in Chinese)

    CAS  Google Scholar 

  • Quaterman J (1986) Lead. In: Mertz W (ed) Trace metals in human and animal nutrition, vol 2. Academic, Florida

    Google Scholar 

  • Ramasamy RK, Congeevaram S, Thamaraiselvi K (2011) Evaluation of isolated fungal strain from e-waste recycling facility for effective sorption of toxic heavy metal Pb (II) ions and fungal protein molecular characterization—a mycoremediation approach Asian. J Exp Biol Sci 2:342–347

    Google Scholar 

  • Raposo C, Roeser MH (2001) Contamination of the environment by the current disposal methods of mercury-containing lamps in the State of Minas Gerais, Brazil. Waste Manage 21:661–670

    CAS  Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 53–70

    Google Scholar 

  • Reeder RJ (1996) Interaction of divalent cobalet, zinc, cadmium and barium with calcite surface during layer growth. Geochem Cosmo Chem Acta 60:1543–1552

    CAS  Google Scholar 

  • Rey-Raap N, Gallardo A (2013) Removal of mercury bonded in residual glass from spent fluorescent lamps. J Environ Manag 115:175–178

    CAS  Google Scholar 

  • Rezaee A, Ramavandi B, Ganati M, Ansari F, Solimanian A (2006) Biosorption of mercury by biomass of filamentous algae Spirogyra species. J Biol Sci 6:695–700

    CAS  Google Scholar 

  • Rodriguez L, Lopez-Bellido F, Carnicer A, Alcalde-Morano V (2003) Phytoremediation of mercury-polluted soils using crop plants. Fresen Environ Bull 12:967–971

    CAS  Google Scholar 

  • Rodriguez L, Rincon J, Asencio I, Rodriguez-Castellanos L (2007) Capability of selected crop plants for shoot mercury accumulation from polluted soils: phytoremediation perspectives. Int J Phytoremediat 9:1–13

    CAS  Google Scholar 

  • Romero D, James J, Mora R, Hays CD (2013) Study on the mechanical and environmental properties of concrete containing cathode ray tube glass aggregate. Waste Manag 33:1659–1666

    Google Scholar 

  • Romero M, Rincon JM, Acosta A (2002) Effect of iron oxide content on the crystallisation of a diopside glass–ceramic glaze. J Eur Cer Soc 22:883–890

    CAS  Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928

    CAS  Google Scholar 

  • Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci U S A 93:3182–3187

    CAS  Google Scholar 

  • Ruiz ON, Daniell H (2009) Genetic engineering to enhance mercury phytoremediation. Curr Opin Chem Biol 20:213–219

    CAS  Google Scholar 

  • Rybarikova L, Dvorska L, Hradecka H, Jiricek P (2001) Surface treatment of lead glasses for reducing the leaching of lead. Ceram-Silik 45:31–34

    CAS  Google Scholar 

  • Saifullah EM, Qadir M, deCaritat P, Tack FMG, Laing GD, Zia MH (2009) EDTA assisted Pb phytoextraction. Chemosphere 74:1279–1291

    CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    CAS  Google Scholar 

  • Sams CE (2007) Methylmercury contamination: impacts on aquatic systems and terrestrial species. USDA Forest Service, Eastern Region Air Quality Program, Milwaukee, WI

    Google Scholar 

  • Sari B (2012) Modeling effluent heavy metal concentrations in a bioleaching process using an artificial neural network technique. African J Biotechnol 11:16196–16204

    CAS  Google Scholar 

  • Sasaki Y, Hayakawa T, Inoue C, Miyazaki A, Silver S, Kusano T (2006) Generation of mercury-hyperaccumulating plants through transgenic expression of the bacterial mercury membrane transport protein MerC. Transgenic Res 15:615–625

    CAS  Google Scholar 

  • Satroutdinov AD, Dedyukhina EG, Chistyakova TI, Witschel M, Minkevich IG, Eroshin VK, Egli T (2000) Degradation of metal–EDTA complexes by resting cells of the bacterial strain DSM 9103. Environ Sci Technol 34:1715–1720

    CAS  Google Scholar 

  • Schmitt D, Miiller A, Csogor Z, Frimmel FH, Posten C (2001) The adsorption kinetics of metal ions onto different microalgae and siliceous earth. Water Res 35:779–785

    CAS  Google Scholar 

  • Schroeder WH, Munthe J (1998) Atmospheric mercury: an overview. Atmos Environ 32:809–822

    CAS  Google Scholar 

  • Schue M, Dover LG, Besra GS, Parkhill J, Brown NL (2009) Sequence and analysis of a plasmid encoded mercury resistance operon from Mycobacterium marinum identifies MerH, a new mercuric ion transporter. J Bacteriol 19:439–444

    Google Scholar 

  • Seo Y-C, Cho S-J, Lee J-S, Kim B-S, Oh, C (2011). A study on recycling of CRT glass waste. International Conference on Environment and Industrial Innovation IPCBEE, Singapore. p 12

  • Shabudeen PSS, Daniel S, Indhumathi P (2013) Utilising the pods of Delonix regia activated carbon for the removal of mercury (II) by adsorption technique. Int J Res Chem Environ 3:60–65

    Google Scholar 

  • Shen ZG, Li XD, Wang CC, Chen HM, Chua H (2002) Lead phytoextraction from contaminated soil with high biomass plant species. J Environ Qual 31:1893–1900

    CAS  Google Scholar 

  • Shi C, Zheng K (2007) A review on the use of waste glasses in the production of cement and concrete. Resour Conserv Recycl 52:234–247

    Google Scholar 

  • Sierra C, Menendez-Aguado J, Afif E, Carrero M, Gallego J (2011) Feasibility study on the use of soil washing to remediate the As–Hg contamination at an ancient mining and metallurgy area. J Hazard Mater 196:93–100

    CAS  Google Scholar 

  • Siikamaki R, Doring E, Manninen J (2002) Closed-loop and open-loop applications for end-of-life cathode-ray-tube glass recycling. Going Green Care Innovation, Austria

    Google Scholar 

  • Silver S (1996) Bacterial resistances to toxic metals—a review. Gene 179:9–19

    CAS  Google Scholar 

  • Sinha A, Pant KK, Khare SK (2012) Studies on mercury bioremediation by alginate immobilized mercury tolerant Bacillus cereus cells. Int Biodeterior Biodegrad 71:160–166

    Google Scholar 

  • Sinha RK, Bharambe G, Ryan D (2008) Converting wasteland into wonderland by earthworms: a low-cost nature’s technology for soil remediation: a case study of vermi remediation of PAH contaminated soil. The Environmentalist UK 28:466–475

    Google Scholar 

  • Skodrasa G, Diamantopouloua I, Sakellaropoulos GP (2007) Role of activated carbon structural properties and surface chemistry in mercury adsorption. Desalination 210:281–286

    Google Scholar 

  • Sladek C, Gustin MS (2003) Evaluation of sequential and selective extraction methods for determination of mercury speciation and mobility in mine waste. Applied Geochem 18:567–576

    CAS  Google Scholar 

  • Smith D, Small M, Dodds R, Amagai S, Strong T (1996) Computer monitor recycling: a case study. Eng Sci Educ J 4:159–164

    Google Scholar 

  • Smolinska B, Cedzynska K (2007) EDTA and urease effects on Hg accumulation by Lepidium sativum. Chemosphere 69:1388–1395

    CAS  Google Scholar 

  • Socolof ML, Overly JG, Geibig JR (2005) Environmental life-cycle impacts of CRT and LCD desktop computer displays. J Cleaner Prod 13:1281–1294

    Google Scholar 

  • Srinivasarao G, Veeraiah N (2001) Study on various physical properties of PbO–AsO glasses containing manganese ions. J Alloys Compounds 327:52–65

    CAS  Google Scholar 

  • Stahler D, Ladner S, Jackson H (2008). Maine compact fluorescent lamp study. Maine Department of Environmental Protection. http://maine.gov/dep/rwm/homeowner/cflreport.htm

  • Steijns M, Peppelenbos A, Mars P (1976) Mercury chemisorption by sulfur adsorbed in porous materials. J Colloid Interface Sci 57:181–186

    CAS  Google Scholar 

  • Stone V, Nowack B, Baun A, van den Brink N, von der Kammer F, Dusinska M, Handy R, Hankinh S, Hassellov M, Joner E, Fernandes TF (2010) Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. Sci Total Environ 408:1745–1754

    CAS  Google Scholar 

  • Strzalkowska A, Wojtala M, Siwka J (2012) Pb(II) leaching from waste CRT funnel glass in nitric acid solutions. J Achievements Mater Manufactur Engineer 55:825–828

    Google Scholar 

  • Summers AO (1986) Organization, expression and evolution of genes for mercury resistance. Ann Rev Microbiol 40:607–634

    CAS  Google Scholar 

  • Suthar S, Singh S, Dhawan S (2008) Earthworms as bioindicator of metals (Zn, Fe, Mn, Cu, Pb and Cd) in soils: is metal bioaccumulation affected by their ecological category? Ecological Engineer 32:99–107

    Google Scholar 

  • Suzuki Y, Kametani T, Maruyama T (2005) Removal of heavy metals from aqueous solution by nonliving Ulva seaweed as biosorbent. Water Res 39:1803–1808

    CAS  Google Scholar 

  • Svehla G (2004) Vogel’s quantitative inorganic analysis, 7th edn. Pearson, India

    Google Scholar 

  • Tan Z, Xiang J, Su S, Zeng H, Zhou C, Sun L, Hu S, Qiu J (2012) Enhanced capture of elemental mercury by bamboo-based sorbents. J Hazard Mater 239–240:160–166

    Google Scholar 

  • Tandy S, Schulin R, Nowack B (2006) The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers. Chemosphere 62:1454–1463

    CAS  Google Scholar 

  • Tasaki T, Takasuga T, Osako M, Sakai S (2004) Substance flow analysis of brominated flame retardants and related compounds in waste TV sets in Japan. Waste Manage 24:571–580

    CAS  Google Scholar 

  • Taube F, Pommer L, Larsson T, Shchukarev A, Nordin A (2008) Soil remediation–mercury speciation in soil and vapor phase during thermal treatment. Water Air Soil Pollut 193:155–163

    CAS  Google Scholar 

  • Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D (2003) Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol 18:149–175

    CAS  Google Scholar 

  • Terro MJ (2006) Properties of concrete made with recycled crushed glass at elevated temperatures. Balding Environ 41:633–639

    Google Scholar 

  • Tien CJ (2002) Biosorption of metal ions by freshwater algae with different surface characteristics. Process Biochem 38:605–613

    CAS  Google Scholar 

  • Tiwari D, Singh D, Saksena D (1995) Hg (II) adsorption from aqueous solutions using rice-husk ash. J Environ Eng 121:479–481

    CAS  Google Scholar 

  • Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nanotoday 1:44–48

    Google Scholar 

  • Tsydenova O, Bengtsson M (2011) Chemical hazards associated with treatment of waste electrical and electronic equipment. Waste Manag 31:45–58

    CAS  Google Scholar 

  • Turgut P (2008) Properties of masonry blocks produced with waste limestone sawdust and glass powder. Construction Building Mater 22:1422–1427

    Google Scholar 

  • Tuzun I, Bayramoglu G, Alcin YE, Basaran G, Celik G, Arica MY (2005) Equilibrium and kinetic studies on biosorption of Hg(II), Cd(II) and Pb(II) ions onto microalgae Chlamydomonas reinhardtii. J Environ Manage 77:85–92

    CAS  Google Scholar 

  • Udovic M, Lestan D (2007) The effect of earthworms on the fractionation and bioavailability of heavy metals before and after soil remediation. Environ Pollut 148:663–668

    CAS  Google Scholar 

  • USEPA (1998). Peer Review of the USEPA analytical model: mercury emissions from the disposal of fluorescent lamps. Comment response document. Comment no. 3–8. http://www.epa.gov/epaoswer/hazwaste/id/merc-emi/merc-pgs/peerrev.pdf

  • USEPA (1999). Analysis of five community consumer/residential collections: end-of-life electronic and electrical equipment. In: Report, Washington, D.C., USA

  • Vassil AD, Kapulnik Y, Raskin I, Salt DE (1998) The role of EDTA in lead transport and accumulation in Indian mustard. Plant Physiol 117:447–453

    CAS  Google Scholar 

  • Vesely T, Tlustos P, Szakova J (2011) The use of water lettuce (Pistia stratiotes L.) for rhizofiltration of a highly polluted solution by cadmium and lead. Int J Phytoremediation 13:859–872

    CAS  Google Scholar 

  • Vilar VJP, Botelho CMS, Boaventura RAR (2005) Influence of pH, ionic strength and temperature on lead biosorption by Gelidium and agar extraction algal waste. Process Biochem 40:3267–3275

    CAS  Google Scholar 

  • Wagner - dobler I, Canstein HV, Li Y, Timmis KN, Deckwer W-D (2000) Removal of mercury from chemical wastewater by microoganisms in technical scale. Environ Sci Technol 34:4628–4634

    Google Scholar 

  • Wallschlger D, Desai MVM, Spengler M, Wilken RD (1998) Mercury speciation in floodplain soils and sediments along a contaminated river transect. J Environ Qual 27:1034–1044

    Google Scholar 

  • Wang J, Feng X, Anderson CWN, Xing Y, Shang F (2012) Remediation of mercury contaminated sites—a review. J Hazard Mater 221–222:1–18

    Google Scholar 

  • Wang J, Feng X, Anderson CWN, Zhu W, Yin R, Wang H (2011a) Mercury distribution in the soil–plant–air system at the Wanshan mercury mining district in Guizhou, Southwest China. Environ Toxicol Chem 30:2725–2731

    CAS  Google Scholar 

  • Wang JX, Feng XB, Anderson CWN, Qiu GL, Ping L, Bao ZD (2011b) Ammonium thiosulphate enhanced phytoextraction from mercury contaminated soil—results from a greenhouse study. J Hazard Mater 186:119–127

    CAS  Google Scholar 

  • Wang LB, Ma W, Xu LG, Chen W, Zhu YY, Xu C, Xu NA (2010) Nanoparticle-based environmental sensors. Mater Sci Eng, R 70:265–274

    Google Scholar 

  • Wang Y, Greger M (2006) Use of iodide to enhance the phytoextraction of mercury contaminated soil. Sci Total Environ 368:30–39

    CAS  Google Scholar 

  • Wang Y, Stauffer C, Keller C (2005) Changes in Hg fractionation in soil induced by willow. Plant Soil 275:67–75

    CAS  Google Scholar 

  • Wasay SA, Barrington SF, Tokunaga S (1998) Remediation of soils polluted by heavy metals using salts of organic acids and chelating agents. Environ Technol 19:369–379

    CAS  Google Scholar 

  • Washburn C, Hill E (2003) Mercury retorts for the processing of precious metals and hazardous wastes. J Min Met Mater Soc 55:45–50

    CAS  Google Scholar 

  • Wehrheim B, Wettern M (1994) Biosorption of cadmium, copper and lead by isolated mother cell walls and whole cells of Chlorella fusca. Appl Microbiol Biotechnol 41:725–728

    CAS  Google Scholar 

  • Weitzman DH (2003). Is CRT glass-to-lead recycling safe and environmentally friendly? In: ISEE Proceedings of the Electronics and the Environment. IEEE International Symposium, 329–334

  • Welz T, Hischier R, Hilty LM (2011) Environmental impacts of lighting technologies—life cycle assessment and sensitivity analysis. Environmen Impact Assess Rev 31:334–343

    Google Scholar 

  • Wenzel WW, Unterbrunner R, Sommer P, Sacco P (2003) Chelate-assisted phytoextraction using canola (Brassica napus L) in outdoors pot and lysimeter experiments. Plant Soil 249:83–96

    CAS  Google Scholar 

  • Widmer R, Oswald-Krapf H, Sinha-Khetriwal A, Scnellmann M, Boni H (2005) Global perspectives on the e-waste. Environ Impact Assess Rev 25:436–458

    Google Scholar 

  • Wijesekara RJS, Navarro RR, Matsumura M (2011) Removal and recovery of mercury from used fluorescent lamp glass by pyrolysis. J Natn Sci Foundation Sri Lanka 39:235–241

    CAS  Google Scholar 

  • Wilson JR, Leang C, Morby AP, Hobman JL, Brown NL (2000) MerF is a mercury transport protein: different structures but a common mechanism for mercuric ion transporters? FEBS Lett 472:78–82

    CAS  Google Scholar 

  • Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco environmental concerns and opportunities. J Hazard Mater 174:1–8

    CAS  Google Scholar 

  • Xiong Z, He F, Zhao D, Barnett MO (2009) Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles. Water Res 43:5171–5179

    CAS  Google Scholar 

  • Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX, Liu ZF (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10

    CAS  Google Scholar 

  • Xu Q, Yu M, Kendall A, He W, Li G, Schoenung JM (2013) Environmental and economic evaluation of cathode ray tube (CRT) funnel glass waste management options in the United States. Resour Conser Recycl 78:92–104

    Google Scholar 

  • Yadav BK, Siebel MA, Bruggen JJAV (2011) Rhizofiltration of a heavy metal (lead) containing wastewater using the wetland plant Carex pendula. Clean Soil Air Water 39:467–474

    CAS  Google Scholar 

  • Yamaguchi Y, Kaku S, Chaki K (2005). Mercury-removal process in distillation tower. US Patent No. 7563360

  • Yang H, Nairn J, Ozias-Akins P (2003) Transformation of peanut using a modified bacterial mercuric ion reductase gene driven by an actin promoter from Arabidopsis thaliana. J Plant Physiol 160:945–952

    CAS  Google Scholar 

  • Yardim MF, Budinova T, Ekinci E, Petrov N, Razvigorova M, Minkova V (2003) Removal of mercury (II) from aqueous solution by activated carbon obtained from furfural. Chemosphere 52:835–841

    CAS  Google Scholar 

  • Yavuz H, Denizli A, Gungunes H, Safarikova M, Safarik I (2006) Biosorption of mercury on magnetically modified yeast cells. Separat Purificat Technol 52:253–260

    CAS  Google Scholar 

  • Yoshida A, Atsushi T (2010) Reuse of secondhand TVs exported from Japan to the Philippines. Waste Manage 30:1063–1072

    Google Scholar 

  • Yu Q, Matheickal JT, Kaewsarn P (1999) Heavy metal uptake capacities of common marine macro-algal biomass. Water Res 33:1534–1537

    CAS  Google Scholar 

  • Yuan G, Seyama H, Soma M, Theng BKG, Tanaka A (1999) Adsorption of some heavy metals by natural zeolities. J Environ Sci and Health Part A 34:625–648

    Google Scholar 

  • Yuan W, Li J, Zhang Q, Saito F, Yang B (2013a) A novel process utilizing mechanochemical sulfidization to remove lead from cathode ray tube funnel glass. J Air Waste Manag Assoc 63:418–423

    CAS  Google Scholar 

  • Yuan W, Li J, Zhang Q, Saito F, Yang B (2013b) Lead recovery from cathode ray tube funnel glass with mechanical activation. J Air Waste Manag Assoc 63:2–10

    CAS  Google Scholar 

  • Yun YH, Yoon C-H, Oh J-S, Kim S-B, Kang B-A, Hwang K-S (2002) Waste fluorescent glass and shell derived glass-ceramics. J Mater Sci 37:3211–3215

    CAS  Google Scholar 

  • Zahra N (2012) Lead removal from water by low cost adsorbents: a review. Pak J Anal Environ Chem 13:1–8

    CAS  Google Scholar 

  • Zhang J, Bishop PL (2002) Stabilization/solidification (S/S) of mercury-containing wastes using reactivated carbon and Portland cement. J Hazard Mater 92:199–212

    CAS  Google Scholar 

  • Zhang S, Forssberg E, van Houwelingen J, Rem P, Wei L-Y (2000) End-of-life electric and electronic equipment management towards the 21st century. Waste Manage Res 18:73–85

    CAS  Google Scholar 

  • Zhang W (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    CAS  Google Scholar 

  • Zhang X, Lin S, Lu XQ, Chen ZL (2010) Removal of Pb(II) from water using natural kaolin loaded with synthesized nanoscale zero-valent iron. Chem Eng J 163:243–248

    CAS  Google Scholar 

  • Zhang XY, Wang QC, Zhang SQ, Sun XJ, Zhang ZS (2009) Stabilization/ solidification (S/S) of mercury-contaminated hazardous wastes using thiol-functionalized zeolite and Portland cement. J Hazard Mater 168:1575–1580

    CAS  Google Scholar 

  • Zhang Z, Wang X, Wang Y, Xia S, Chen L, Zhang Y, Zhao J (2013) Pb(II) removal from water using Fe-coated bamboo charcoal with the assistance of microwaves. J Environ Sci 25:1044–1053

    CAS  Google Scholar 

  • Zulkali MMD, Ahmad AL, Norulakmal NH (2006) Oryza sativa L. husk as heavy metal adsorbent: optimization with lead as model solution. Biores Technol 97:21–25

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Pant.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pant, D., Singh, P. Pollution due to hazardous glass waste. Environ Sci Pollut Res 21, 2414–2436 (2014). https://doi.org/10.1007/s11356-013-2337-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2337-y

Keywords

Navigation