Skip to main content
Log in

Picture of all Solutions of Successive 2-Block Maxbet Problems

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

The Maxbet method is a generalized principal components analysis of a data set, where the group structure of the variables is taken into account. Similarly, 3-block[12,13] partial Maxdiff method is a generalization of covariance analysis, where only the covariances between blocks (1, 2) and (1, 3) are taken into account. The aim of this paper is to give the global maximum for the 2-block Maxbet and 3-block[12,13] partial Maxdiff problems by picking the best solution from the complete solution set for the multivariate eigenvalue problem involved. To do this, we generalize the characteristic polynomial of a matrix to a system of two characteristic polynomials, and provide the complete solution set of the latter via Sylvester resultants. Examples are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Burt, C. (1917). The distribution and relations of educational abilities. London: P.S. King & Son.

    Google Scholar 

  • Choulakian, V. (2003). The optimality of the centroid method. Psychometrika, 68, 473–475.

    Article  Google Scholar 

  • Choulakian, V. (2006). L1-norm projection pursuit principal component analysis. Computational Statistics & Data Analysis, 50, 1441–1451.

    Article  Google Scholar 

  • Chu, M.T., & Watterson, J.L. (1993). On a multivariate eigenvalue problem, Part I: Algebraic theory and a power method. SIAM Journal on Scientific Computing, 14(5), 1089–1106.

    Article  Google Scholar 

  • Cox, D., Little, J., & O’Shea, D. (2005). Using algebraic geometry (2nd ed.). New York: Springer.

    Google Scholar 

  • Cox, D., Little, J., & O’Shea, D. (2007). Ideals, varieties, and algorithms (3rd ed.). New York: Springer.

    Book  Google Scholar 

  • Drton, M., Sturmfels, B., & Sullivant, S. (2009). Lectures on algebraic statistics. Boston: Birkhauser.

    Book  Google Scholar 

  • Fienberg, S. (2007). Editorial: Expanding the statistical toolkit with algebraic statistics. Statistica Sinica, 17, 1261–1272.

    Google Scholar 

  • Hanafi, M., & Ten Berge, J.M.F. (2003). Global optimality of the successive Maxbet algorithm. Psychometrika, 68, 97–103.

    Article  Google Scholar 

  • Hanafi, M., & Kiers, H.A.L. (2006). Analysis of K sets of data, with differential emphasis on agreement between and within sets. Computational Statistics & Data Analysis, 51, 1491–1508.

    Article  Google Scholar 

  • Hanafi, M., & Lafosse, R. (2001). Generalizations of the simple linear regression to analyze the dependance of K sets of variables with (K+1)th set. Revue de Statistique Appliquée, 49(1), 5–30. (In French).

    Google Scholar 

  • Horst, P. (1961). Relations among m sets of measures. Psychometrika, 26, 129–149.

    Article  Google Scholar 

  • Kettenring, J.R. (1971). Canonical analysis of several sets of variables. Biometrika, 58, 433–451.

    Article  Google Scholar 

  • Kissita, G., Cazes, P., Hanafi, M., & Lafosse, R. (2004). Two factorial analysis methods for the study of relationship between two tables of partitioned variables. Revue de Statistique Appliquée, 52(3), 73–92. (In French).

    Google Scholar 

  • Lafosse, R., & Hanafi, M. (1997). Concordance of a table with K tables: Defining K+1 synthetic variables. Revue de Statistique Appliquée, 45(4), 111–126. (In French).

    Google Scholar 

  • Pistone, G., Riccomagno, E., & Wynn, H.P. (2001). Algebraic statistics: Computational commutative algebra in statistics. New York: Chapman & Hall/CRC.

    Google Scholar 

  • Ten Berge, J.M.F. (1988). Generalized approaches to the Maxbet problem and the Maxdiff problem, with applications to canonical correlations. Psychometrika, 53, 487–494.

    Article  Google Scholar 

  • Thurstone, L.L. (1931). Multiple factor analysis. Psychological Review, 38, 406–427.

    Article  Google Scholar 

  • van de Geer, J.P. (1984). Linear relations among k sets of variables. Psychometrika, 49, 79–94.

    Article  Google Scholar 

  • Vivien, M., & Sabatier, R. (2001). An extension of multiple tables by PLS regression. Revue de Statistique Appliquée, 49(1), 31–54. (In French).

    Google Scholar 

  • Zhang, L.-H., & Chu, M.T. (2009). On a multivariate eigenvalue problem: II. Global solutions and the Gauss-Seidel method. Preprint, available at http://www4.ncsu.edu/mtchu/Research/Papers/Readme.html.

  • Zhang, L.-H., Liao, L.-Z., & Sun, L.-M. (2011). Towards the global solution of the maximal correlation problem. Journal of Global Optimization, 49, 91–107.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vartan Choulakian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choulakian, V. Picture of all Solutions of Successive 2-Block Maxbet Problems. Psychometrika 76, 550–563 (2011). https://doi.org/10.1007/s11336-011-9226-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-011-9226-4

Keywords

Navigation