Skip to main content
Log in

The three glioma rat models C6, F98 and RG2 exhibit different metabolic profiles: in vivo 1H MRS and ex vivo 1H HRMAS combined with multivariate statistics

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Glioblastomas are the most malignant subtypes of glioma and many efforts are currently made to improve their characterization though molecular, microvascular, immunogenic and metabolomic approaches. The variability within pre-clinical tumor models may mimic glioma heterogeneity and force the development of innovative analytical methodologies. In this study, we investigate the metabolic variability within three rat models of glioma: C6, RG2 and F98, using in vivo magnetic resonance spectroscopy (1H MRS) and ex vivo high resolution magic angle spinning (1H HRMAS MRS). We used a multivariate statistic approach with orthogonal projection to latent structure-discriminant analysis (OPLS-DA) that was compared with univariate statistic. OPLS-DA reveals a clear separation between C6, RG2 and F98 tumors and, with the help of shared and unique structure plot (SUS-Plot), promotes a comprehensive view of their metabolic differences. Both in vivo and ex vivo analyses are similar but ex vivo 1H HRMAS MRS provides more robust results. In conclusion, MRS-based OPLS-DA appears sensitive enough to correctly predict the classification of tumors and to investigate the relationship between the host brain metabolism and the grafted tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Ace:

Acetate

Ala:

Alanine

Asp:

Aspartate

Bet:

Betaine

Cho:

Choline

GABA:

Gamma-amino-butyric acid

Gln:

Glutamine

Glu:

Glutamate

Gly:

Glycine

GPC:

Glycerophosphocholine

Gsh:

Glutathione

Hyp:

Hypotaurine

Lac:

Lactate

M-ins:

Myo-inositol

NAA:

N-acetylaspartate

PC:

Phosphocholine

tCr:

Total creatine (phosphocreatine and creatine)

PE:

Phosphoethanolamine

S-Ins:

Scyllo-inositol

Tau:

Taurine

MM:

Macromolecules

MRS:

Magnetic resonance spectroscopy

HRMAS:

High resolution magic angle spinning

jMRUI:

Java based version of the Magnetic Resonance User Interface

OPLS-DA:

Orthogonal projection to latent structure-discriminant analysis

PCA:

Principal component analysis

SUS-plot:

Shared and unique structure plot

GBM:

Glioblastomas

PRESS:

Point RESolved spectroscopy

CPMG:

Carr-Purcell-Meiboom-Gill CPMG

CRLB:

Cramer Rao lower bounds

FID:

Free induced decay

NMR:

Nuclear magnetic resonance

References

  • Bansal, A., Shuyan, W., Hara, T., Harris, R. A., & DeGrado, T. R. (2008). Biodisposition and metabolism of [18F] fluorocholine in 9L glioma cells and 9L glioma-bearing fisher rats. European Journal of Nuclear Medicine and Molecular Imaging, 35(6), 1192–1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbier, E. L., Lamalle, L., & Décorps, M. (2001). Methodology of brain perfusion imaging. Journal of Magnetic Resonance Imaging, 13(4), 496–520.

    Article  CAS  PubMed  Google Scholar 

  • Barth, R. F., & Kaur, B. (2009). Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. Journal of Neuro-oncology, 94(3), 299–312.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bottomley, P. A. (1987). Spatial localization in NMR spectroscopy in vivo. Annals of the New York Academy of Sciences, 508(1), 333–348.

    Article  CAS  PubMed  Google Scholar 

  • Bulik, M., Jancalek, R., Vanicek, J., Skoch, A., & Mechl, M. (2013). Potential of MR spectroscopy for assessment of glioma grading. Clinical Neurology and Neurosurgery, 115(2), 146–153.

    Article  PubMed  Google Scholar 

  • Christen, T., Bouzat, P., Pannetier, N., Coquery, N., Moisan, A., Lemasson, B., et al. (2014). Tissue oxygen saturation mapping with magnetic resonance imaging. Journal of Cerebral Blood Flow and Metabolism, 34(9), 1550–1557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemens, L. E., Jansson, E. K. H., Portal, E., Riess, O., & Nguyen, H. P. (2014). A behavioral comparison of the common laboratory rat strains Lister Hooded, Lewis, Fischer 344 and Wistar in an automated homecage system. Genes, Brain and Behavior, 13(3), 305–321.

    Article  CAS  Google Scholar 

  • Coquery, N., Francois, O., Lemasson, B., Debacker, C., Farion, R., Rémy, C., & Barbier, E. L. (2014). Microvascular MRI and unsupervised clustering yields histology-resembling images in two rat models of glioma. Journal of Cerebral Blood Flow and Metabolism, 34(8), 1354–1362.

    Article  PubMed  PubMed Central  Google Scholar 

  • Coquery, N., Pannetier, N., Farion, R., Herbette, A., Azurmendi, L., Clarencon, D., et al. (2012). Distribution and radiosensitizing effect of cholesterol-coupled dbait molecule in rat model of glioblastoma. PLoS One, 7(7), e40567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuperlovic-Culf, M., Ferguson, D., Culf, A., Morin, P., & Touaibia, M. (2012). 1H NMR metabolomics analysis of glioblastoma subtypes correlation between metabolomics and gene expression characteristics. Journal of Biological Chemistry, 287(24), 20164–20175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang, C. V. (2010). Rethinking the warburg effect with Myc micromanaging glutamine metabolism. Cancer Research, 70(3), 859–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Graaf, R. A. (2007). Front matter. In vivo NMR spectroscopy (pp. i–xxi). John Wiley & Sons, Ltd.

  • Doblas, S., He, T., Saunders, D., Hoyle, J., Smith, N., Pye, Q., et al. (2012). In vivo characterization of several rodent glioma models by 1H MRS. NMR in Biomedicine, 25(4), 685–694.

    Article  CAS  PubMed  Google Scholar 

  • Doblas, S., He, T., Saunders, D., Pearson, J., Hoyle, J., Smith, N., et al. (2010). Glioma morphology and tumor-induced vascular alterations revealed in seven rodent glioma models by in vivo magnetic resonance imaging and angiography. Journal of Magnetic Resonance Imaging, 32(2), 267–275.

    Article  PubMed  PubMed Central  Google Scholar 

  • Erb, G., Elbayed, K., Piotto, M., Raya, J., Neuville, A., Mohr, M., et al. (2008). Toward improved grading of malignancy in oligodendrogliomas using metabolomics. Magnetic Resonance in Medicine, 59(5), 959–965.

    Article  CAS  PubMed  Google Scholar 

  • Fauvelle, F., Carpentier, P., Dorandeu, F., Foquin, A., & Testylier, G. (2012). Prediction of neuroprotective treatment efficiency using a HRMAS NMR-Based statistical model of refractory status epilepticus on mouse: A metabolomic approach supported by histology. Journal of Proteome Research, 11(7), 3782–3795.

    Article  CAS  PubMed  Google Scholar 

  • Glunde, K., Bhujwalla, Z. M., & Ronen, S. M. (2011). Choline metabolism in malignant transformation. Nature Reviews Cancer, 11(12), 835–848.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Golden, G. T., Smith, G. G., Ferraro, T. N., & Reyes, P. F. (1995). Rat strain and age differences in kainic acid induced seizures. Epilepsy Research, 20(2), 151–159.

    Article  CAS  PubMed  Google Scholar 

  • Govindaraju, V., Young, K., & Maudsley, A. A. (2000). Proton NMR chemical shifts and coupling constants for brain metabolites. NMR in Biomedicine, 13(3), 129–153.

    Article  CAS  PubMed  Google Scholar 

  • Griffin, J. L., & Shockcor, J. P. (2004). Metabolic profiles of cancer cells. Nature Reviews Cancer, 4(7), 551–561.

    Article  CAS  PubMed  Google Scholar 

  • Grobben, B., Deyn, P. D., & Slegers, H. (2002). Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion. Cell and Tissue Research, 310(3), 257–270.

    Article  CAS  PubMed  Google Scholar 

  • He, X., & Yablonskiy, D. A. (2007). Quantitative BOLD: Mapping of human cerebral deoxygenated blood volume and oxygen extraction fraction: Default state. Magnetic Resonance in Medicine, 57(1), 115–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herz, R. C. G., Gaillard, P. J., de Wildt, D. J., & Versteeg, D. H. G. (1996). Differences in striatal extracellular amino acid concentrations between wistar and fischer 344 rats after middle cerebral artery occlusion. Brain Research, 715(1–2), 163–171.

    Article  CAS  PubMed  Google Scholar 

  • Holmes, E., Tsang, T. M., & Tabrizi, S. J. (2006). The application of NMR-based metabonomics in neurological disorders. NeuroRx, 3(3), 358–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong, S.-T., Balla, D. Z., Choi, C., & Pohmann, R. (2011). Rat strain-dependent variations in brain metabolites detected by in vivo 1H NMR spectroscopy at 16.4T. NMR in Biomedicine, 24(10), 1401–1407.

    Article  CAS  PubMed  Google Scholar 

  • Huszthy, P. C., Daphu, I., Niclou, S. P., Stieber, D., Nigro, J. M., Sakariassen, P. O., et al. (2012). In vivo models of primary brain tumors: pitfalls and perspectives. Neuro-Oncology, 14(8), 979–993.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanayama, S., Kuhara, S., & Satoh, K. (1996). In vivo rapid magnetic field measurement and shimming using single scan differential phase mapping. Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine, 36(4), 637–642.

    Article  CAS  Google Scholar 

  • Kauppinen, R. A., & Peet, A. C. (2011). Using magnetic resonance imaging and spectroscopy in cancer diagnostics and monitoring. Cancer Biology & Therapy, 12(8), 665–679.

    Article  CAS  Google Scholar 

  • Lemasson, B., Valable, S., Farion, R., Krainik, A., Rémy, C., & Barbier, E. L. (2013). In vivo imaging of vessel diameter, size, and density: A comparative study between MRI and histology. Magnetic Resonance in Medicine, 69(1), 18–26.

    Article  PubMed  Google Scholar 

  • Opstad, K. S., Bell, B. A., Griffiths, J. R., & Howe, F. A. (2009). Taurine: A potential marker of apoptosis in gliomas. British Journal of Cancer, 100(5), 789–794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opstad, K. S., Wright, A. J., Bell, B. A., Griffiths, J. R., & Howe, F. A. (2010). Correlations between in vivo 1H MRS and ex vivo 1H HRMAS metabolite measurements in adult human gliomas. Journal of Magnetic Resonance Imaging, 31(2), 289–297.

    Article  PubMed  Google Scholar 

  • Piotto, M., Moussallieh, F.-M., Dillmann, B., Imperiale, A., Neuville, A., Brigand, C., et al. (2009). Metabolic characterization of primary human colorectal cancers using high resolution magic angle spinning 1H magnetic resonance spectroscopy. Metabolomics, 5(3), 292–301.

    Article  CAS  Google Scholar 

  • Rabeson, H., Fauvelle, F., Testylier, G., Foquin, A., Carpentier, P., Dorandeu, F., et al. (2008). Quantitation with QUEST of brain HRMAS-NMR signals: Application to metabolic disorders in experimental epileptic seizures. Magnetic Resonance in Medicine, 59(6), 1266–1273.

    Article  CAS  PubMed  Google Scholar 

  • Ratiney, H., Sdika, M., Coenradie, Y., Cavassila, S., van Ormondt, D., & Graveron-Demilly, D. (2005). Time-domain semi-parametric estimation based on a metabolite basis set. NMR in Biomedicine, 18(1), 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Stupp, R., Mason, W. P., van den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J. B., et al. (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. The New England Journal of Medicine, 352(10), 987–996.

    Article  CAS  PubMed  Google Scholar 

  • Tkáč, I., Starčuk, Z., Choi, I.-Y., & Gruetter, R. (1999). In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magnetic Resonance in Medicine, 41(4), 649–656.

    Article  PubMed  Google Scholar 

  • Tofts, P. S., Brix, G., Buckley, D. L., Evelhoch, J. L., Henderson, E., Knopp, M. V., et al. (1999). Estimating kinetic parameters from dynamic contrast-enhanced t1-weighted MRI of a diffusible tracer: Standardized quantities and symbols. Journal of Magnetic Resonance Imaging, 10(3), 223–232.

    Article  CAS  PubMed  Google Scholar 

  • Troprès, I., Grimault, S., Vaeth, A., Grillon, E., Julien, C., Payen, J.-F., et al. (2001). Vessel size imaging. Magnetic Resonance in Medicine, 45(3), 397–408.

    Article  PubMed  Google Scholar 

  • Valable, S., Lemasson, B., Farion, R., Beaumont, M., Segebarth, C., Remy, C., & Barbier, E. L. (2008). Assessment of blood volume, vessel size, and the expression of angiogenic factors in two rat glioma models: a longitudinal in vivo and ex vivo study. NMR in Biomedicine, 21(10), 1043–1056.

    Article  CAS  PubMed  Google Scholar 

  • Verhaak, R. G. W., Hoadley, K. A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M. D., et al. (2010). An integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR and NF1. Cancer Cell, 17(1), 98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weller, M., Stupp, R., Hegi, M., & Wick, W. (2012). Individualized targeted therapy for glioblastoma. The Cancer Journal, 18(1), 40–44.

    Article  CAS  PubMed  Google Scholar 

  • Wieruszeski, J.-M., Montagne, G., Chessari, G., Rousselot-Pailley, P., & Lippens, G. (2001). Rotor synchronization of radiofrequency and gradient pulses in high-resolution magic angle spinning NMR. Journal of Magnetic Resonance, 152(1), 95–102.

    Article  CAS  PubMed  Google Scholar 

  • Wiklund, S., Johansson, E., Sjöström, L., Mellerowicz, E. J., Edlund, U., Shockcor, J. P., et al. (2008). Visualization of GC/TOF-MS-Based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Analytical Chemistry, 80(1), 115–122.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, M., Davies, N. P., Grundy, R. G., & Peet, A. C. (2009). A quantitative comparison of metabolite signals as detected by in vivo MRS with ex vivo1H HR-MAS for childhood brain tumours. NMR in Biomedicine, 22(2), 213–219.

    Article  CAS  PubMed  Google Scholar 

  • Wold, S., Ruhe, A., Wold, H., & Dunn, W. J, I. I. I. (1984). The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM Journal on Scientific and Statistical Computing, 5(3), 735–743.

    Article  Google Scholar 

  • Wright, A. J., Fellows, G. A., Griffiths, J. R., Wilson, M., Bell, B., & Howe, F. A. (2010). Ex-vivo HRMAS of adult brain tumours: metabolite quantification and assignment of tumour biomarkers. Molecular Cancer, 9(1), 66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yancey, P. H. (2005). Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. Journal of Experimental Biology, 208(15), 2819–2830.

    Article  CAS  PubMed  Google Scholar 

  • Ziegler, A., von Kienlin, M., Décorps, M., & Rémy, C. (2001). High glycolytic activity in rat glioma demonstrated in vivo by correlation peak 1H magnetic resonance imaging. Cancer Research, 61(14), 5595–5600.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the animal care facility of GIN.

Funding

This study was funded by the French Service de Santé des Armées, the Fondation ARC (“Association pour la Recherche sur le Cancer”) and ANR (“Agence Nationale pour la Recherche”) Imoxy grant. IRMaGe was partly funded by the French program “Investissement d’Avenir” run by the “Agence Nationale pour la Recherche”; grant “Infrastructure d’avenir en Biologie Santé”—ANR-11-INBS-0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Fauvelle.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

The study design was approved by the local ethical committee for animal care and use (C2EA-04: “Comité d’éthique en expérimentation animale GIN”). Experiments were performed under permits (No. 38 12 63 and B 38 516 10 008 for experimental and animal care facilities) from the French Ministry of Agriculture.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 1409 kb)

Supplementary Table 1. Metabolite assignment

Supplementary material 2 (TIFF 2445 kb)

Supplementary Table 2. Details of statistical values presented in Table 1

Supplementary material 3 (TIFF 996 kb)

Supplementary Table 3. OPLS-DA models built with quantified 1H MRS data (in vivo) or 1H HRMAS MRS data (ex vivo) as x variables and tumor types as classes (C6, F98 and RG2). Cumulative values of R2X, R2Y and Q2 are given

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coquery, N., Stupar, V., Farion, R. et al. The three glioma rat models C6, F98 and RG2 exhibit different metabolic profiles: in vivo 1H MRS and ex vivo 1H HRMAS combined with multivariate statistics. Metabolomics 11, 1834–1847 (2015). https://doi.org/10.1007/s11306-015-0835-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-015-0835-2

Keywords

Navigation