Skip to main content
Log in

Isolating modeling effects in offender risk assessment

  • Published:
Journal of Experimental Criminology Aims and scope Submit manuscript

Abstract

Objectives

Recent evolutions in actuarial research have revealed the potential increased utility of machine learning and data-mining strategies to develop statistical models such as classification/decision-tree analysis and neural networks, which are said to mimic the decision-making of practitioners. The current article compares such actuarial modeling methods with a traditional logistic regression risk-assessment development approach.

Methods

Utilizing a large purposive sample of Washington State offenders (N = 297,600), the current study examines and compares the predictive validity of the currently used Washington State Static Risk Assessment (SRA) instrument to classification tree analysis/random forest and neural network models.

Results

Overall findings varied, being dependent on the outcome of interest, with the best model for each method resulting in AUCs ranging from 0.732 to 0.762. Findings reveal some predictive performance improvements with advanced machine-learning methodologies, yet the logistic regression models demonstrate comparable predictive performance.

Conclusions

The study concluded that while data-mining techniques hold potential for improvements over traditional methods, regression-based models demonstrate comparable, and often improved, prediction performance with noted parsimony and greater interpretability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. We use the term “general” offender recidivism assessments to draw a distinction between those used for a correctional offender population and those used for specific populations, namely: sex offenders, psychopaths, and the mentally ill.

  2. Overfitting is a term used to indicate that a model is trained too closely to the development (construction) sample and loses predictive accuracy when applied to additional (validation) samples.

  3. It should be noted that with 100 bootstrap draws, the 95 % CI for each performance measure is calculated as (m-1.96*SD/ √(100), m + 1.96*SD/ √(100)). For presentation purposes, CIs are not included with model results but may be obtained by contacting the corresponding author.

References

  • Andrews, D. A. (1982). The level of supervision inventory (LSI). Ontario Ministry of Correctional Services.

  • Andrews, D. A. (1995). No title. Cited in LS/CMI Manual pp. 117–144.

  • Andrews, D. A., & Bonta, J. (1995). The LSI-R: the level of service inventory–revised. Toronto: Multi-Health Systems.

    Google Scholar 

  • Andrews, D., Bonta, J., & Hoge, R. (1990a). Classification for effective rehabilitation: rediscovering psychology. Criminal Justice and Behavior, 17(1), 19–52.

    Article  Google Scholar 

  • Andrews, D., Zinger, I., Hodge, R., Bonta, J., Gendreau, P., & Cullen, F. (1990b). Does correctional treatment work? a clinically relevant and psychologically informed meta-analysis. Criminology, 28(3), 369–392.

    Article  Google Scholar 

  • Andrews, D., Bonta, J., & Wormith, S. (2006). The recent past and near future of risk/need assessment. Crime and Delinquency, 52(1), 7–27.

    Article  Google Scholar 

  • Austin, J., Coleman, D., Peyton, J., & Johnson, K.D. (2003). Reliability and validity study of the LSI-R risk assessment instrument. Washington, D.C. Institute on Crime, Justice, and Corrections at The George Washington University.

  • Baird, C. S. (1981). Probation and parole classification: the Wisconsin model. Corrections Today, 43, 36–41.

    Google Scholar 

  • Banks, S., Robbins, P. C., Silver, E., Vesselinov, R., Steadman, H. J., Monahan, J., Mulvey, E. P., Appelbaum, P. S., Grisso, T., & Roth, L. H. (2004). A multiple-models approach to violence risk assessment among people with mental disorder. Criminal Justice and Behavior, 31(3), 324–340.

    Article  Google Scholar 

  • Barnoski, R. (2010) Washington State static risk assessment—version 2.0. [Modified to improve reliability and validity, requested by Washington State Center for Court Research].

  • Barnoski, R., Aos, S. (2003). Washington’s Offender Accountability Act: An Analysis of the Department of Corrections’ Risk Assessment. #03-12-1202.

  • Barnoski, R., Drake, E. (2007). Washington’s Offender Accountability Act: Department of Corrections’ Static Risk Instrument. #07-03-1201.

  • Berk, R., Sherman, L., Barnes, G., Kurtz, E., & Ahlman, L. (2009). Forecasting murder within a population of probationers and parolees: a high stakes application of statistical learning. Journal of the Royal Statistical Society A, 172(Part 1), 191–211.

    Article  Google Scholar 

  • Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford: Oxford University Press.

    Google Scholar 

  • Breiman, L. (1996). Bagging predictors. Machine Learning Journal, 26, 123–140.

    Google Scholar 

  • Breiman, L. (2001a). Statistical modeling: the two cultures. Statistical Science, 16(3), 199–215.

    Article  Google Scholar 

  • Breiman, L. (2001b). Random forests. Machine Learning Journal, 45(1), 5–32.

    Article  Google Scholar 

  • Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Monterey: Wadsworth and Brooks/Cole.

    Google Scholar 

  • Brennan, T., & Oliver, W. L. (2000). Evaluation of reliability and validity of COMPAS scales: national aggregate sample. Traverse City: Northpointe Institute for Public Management.

    Google Scholar 

  • Brennan, T., Dieterich, B., Breitenbach, M., & Mattson, B. (2009a). Commentary on NCCD “A questions of evidence: A critique of risk assessment models used in the justice system”. Northpointe Institute for Public Management, Inc. http://www.northpointeinc.com/files/whitepapers/Baird_Response_060409.pdf

  • Brennan, T., Dieterich, W., & Ehret, B. (2009b). Evaluation the predictive validity of the comps risk and needs assessment system. Criminal Justice and Behavior, 36(1), 21–40.

    Article  Google Scholar 

  • Brodzinski, J. D., Crable, E. A., & Scherer, R. F. (1994). Using artificial intelligence to model juvenile recidivism patterns. Computers in Human Services, 10(4), 1–18.

    Article  Google Scholar 

  • Caulkins, J., Cohen, J., Gorr, W., & Wei, J. (1996). Predicting criminal recidivism: a comparison of neural networks with statistical models. Journal of Criminal Justice, 24(3), 227–240.

    Article  Google Scholar 

  • Cottle, C. C., Lee, R. J., & Heilbrun, K. (2001). The prediction of criminal recidivism in juveniles: a meta-analysis. Criminal Justice and Behavior, 28(3), 367–394.

    Article  Google Scholar 

  • Duwe, G. (2013). The development, validity, and reliability of the Minnesota screening tool assessing recidivism risk (MnSTARR). Criminal Justice Policy Review, XX, 1–35. doi:10.1177/0887403413478821.

    Google Scholar 

  • Gardner, W., Lidz, C., Mulvey, E., & Shaw, E. (1996). A comparison of actuarial methods of identifying repetitively violent patients with mental illness. Law and Human Behavior, 20(1), 35–48.

    Article  Google Scholar 

  • Gottfredson, S., & Moriarty, L. (2006). Statistical risk assessment: Old problems and New applications. Crime and Delinquency, 52(1), 178–200.

    Article  Google Scholar 

  • Grann, M., & Langstrom, N. (2007). Actuarial assessment of violent risk: to weigh or Not to weigh. Criminal Justice and Behavior, 34(1), 22–36.

    Article  Google Scholar 

  • Hare, R. (1991). The revised psychopathy checklist. Toronto: Multi-Health Systems.

    Google Scholar 

  • Harper, P. R. (2005). A review and comparison of classification algorithms for medical decision making. Health Policy, 71(3), 315–331.

    Article  Google Scholar 

  • Harrell, F., Lee, K., & Mark, D. (1996). Multivariate prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in Medicine, 15, 361–387.

    Article  Google Scholar 

  • Haykin, S. (1999). Neural networks: a comprehensive foundation. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Hertz, J., Palmer, R. G., & Krogh, A. S. (1990). Introduction to the theory of neural computation. New York: Perseus Books.

    Google Scholar 

  • Jung, S., & Rawana, E. P. (1999). Risk-need assessment of juvenile offenders. Criminal Justice and Behavior, 26, 69–89.

    Article  Google Scholar 

  • Latessa, E., Smith, P., Lemke, R., Markarios, M., Lowenkamp, C. (2009) Creation and Validation of the Ohio Risk Assessment System – Final Report. Ohio Department of Rehabilitation and Correction. # 2005-JG-E0R-6269 and 2005-JG-C01-T8.

  • Liu, Y. Y., Yang, M., Ramsay, M., Li, X. S., & Coid, J. W. (2011). A comparison of logistic regression, classification and regression tree, and neural networks models in predicting violent Re-offending. Journal of Quantitative Criminology, 27(4), 547–573.

    Article  Google Scholar 

  • Loeber, R., & Farrington, D. (1998). Serious and violent juvenile offenders: risk factors and successful interventions. Thousand Oaks: Sage.

    Google Scholar 

  • Monahan, J., Steadman, H. J., Appelbaum, P. S., Robbins, P. C., Mulvey, E. P., Silver, E., Roth, L. H., & Grisso, T. (2000). Developing a clinically useful actuarial tool for assessing violence risk. British Journal of Psychiatry, 176(4), 312–319.

    Article  Google Scholar 

  • Monahan, J., Steadman, H. J., Robbins, P. C., Appelbaum, P., Banks, S., & Grisso, T. (2005). An actuarial model of violence risk assessment for persons with mental disorders. Psychiatric Services, 56(7), 810–815.

    Article  Google Scholar 

  • Monahan, J., Steadman, H. J., Appelbaum, P. S., Grisso, T., Mulvey, E. P., & Roth, L. H. (2006). The classification of violence risk. Behavioral Sciences and the Law, 24(6), 721–730.

    Article  Google Scholar 

  • Neuilly, M.-A., Zgoba, K. M., Tita, G. E., & Lee, S. (2011). Predicting recidivism in homicide offenders using classification tree analysis. Homicide Studies, 15(2), 154–176.

    Article  Google Scholar 

  • Palocsay, S. W., Wang, P., & Brookshire, R. G. (2000). Predicting criminal recidivism using neural networks. Socio-Economic Planning Sciences, 34(4), 271–284.

    Article  Google Scholar 

  • Ripley, B. D. (1996). Pattern recognition and neural networks. New York: Cambridge University Press.

    Book  Google Scholar 

  • Rosenfeld, B., & Lewis, C. (2005). Assessing violence risk in stalking cases: a regression tree approach. Law and Human Behavior, 29(3), 343–357.

    Article  Google Scholar 

  • Schaffer, D., Kelly, B., & Lieberman, J. (2011). An exemplar-based approach to risk assessment: validating the risk management systems instrument. Criminal Justice Policy Review, 22(2), 167–186.

    Article  Google Scholar 

  • Silver, E., & Chow-Martin, L. (2002). A multiple-models approach to assessing recidivism risk: implications for judicial decision making. Criminal Justice and Behavior, 29(5), 538–568.

    Article  Google Scholar 

  • Silver, E., Smith, W. R., & Banks, S. (2000). Constructing actuarial devices for predicting recidivism: a comparison of methods. Criminal Justice and Behavior, 27(6), 733–764.

    Article  Google Scholar 

  • Skeem, J., & Louden, J. (2007). Assessment of Evidence on the quality of the correctional offender management profiling for alternative sanctions (COMPAS). Prepared for the California department of corrections and rehabilitation (CDCR). CA: Davis.

    Google Scholar 

  • Smith, M. (1993). Neural networks for statistical modeling. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Smith, P., Cullen, F., & Latessa, E. (2009). Can 14,737 women be wrong? a meta-analysis of the LSI-R and recidivism for female offenders. Criminology and Public Policy, 8(1), 183–208.

    Article  Google Scholar 

  • Stalans, L. J., Yarnold, P. R., Seng, M., Olson, D. E., & Repp, M. (2004). Identifying three types of violent offenders and predicting violent recidivism while on probation: a classification tree analysis. Law and Human Behavior, 28(3), 253–262.

    Article  Google Scholar 

  • Steadman, H. J., Silver, E., Monahan, J., Appelbaum, P. S., Clark Robbins, P., Mulvey, E. P., Grisso, T., Roth, L. H., & Banks, S. (2000). A classification tree approach to the development of actuarial violence risk assessment tools. Law and Human Behavior, 24(1), 83–100.

    Article  Google Scholar 

  • Thomas, S., Leese, M., Walsh, E., McCrone, P., Moran, P., Burns, T., Creed, F., Tirer, P., & Fahy, T. (2005). A comparison of statistical models in predicting violence in psychotic illness. Comprehensive Psychiatry, 46, 296–303.

    Article  Google Scholar 

  • Tollenaar, N., & van der Heijden, P. G. M. (2013). Which method predicts recidivism best?: a comparison of statistical, machine learning, and data mining predictive models. Journal of the Royal Statistical Society: Series A (Statistics in Society), 176(2), 565–584.

    Article  Google Scholar 

  • Van Voorhis, P., Wright, E. M., Salisbury, E., & Bauman, A. (2010). Women’s risk factors and their contributions to the existing risk/needs assessment: the current status of a gender-responsive supplement. Criminal Justice and Behavior, 37, 261–288.

    Article  Google Scholar 

  • Wasserman, P. (1993). Advanced methods in neural computing. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Wasserman, L. (2014). Rise of the machines. In X. Lin, D. L. Banks, C. Genest, G. Molenberghs, D. W. Scott, & J.-L. Wang (Eds.), Past, present, and future of statistical science (pp. 1–12). Boca Raton: CRC Press. Chapter 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary Hamilton.

Appendix I

Appendix I

Table 3 Recapitulation of previous research comparing linear and non-linear risk-assessment tools

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamilton, Z., Neuilly, MA., Lee, S. et al. Isolating modeling effects in offender risk assessment. J Exp Criminol 11, 299–318 (2015). https://doi.org/10.1007/s11292-014-9221-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11292-014-9221-8

Keywords

Navigation