Skip to main content
Log in

Dendroclimatic signals deduced from riparian versus upland forest interior pines in North Karelia, Finland

  • Original Article
  • Published:
Ecological Research

Abstract

Radial growth of boreal tree species is only rarely studied in riparian habitats. Here we investigated chronologies of earlywood, latewood, and annual ring widths and blue intensity (BI; a surrogate to latewood density) from riparian lake shore and upland forest interior pines (Pinus sylvestris L.) growing in boreal forest in eastern Finland. Riparian and upland chronologies were compared to examine differences in the pine growth variability and growth response to climatic variation in the two habitats. It was found that the climatic variables showing statistically significant correlations with the tree-ring chronologies were related to snow conditions at the start of the growing season. Deeper snowpack led to reduced upland pine growth, possibly due to delayed snowmelt and thus postponed onset of the growing season. Warm late winters were followed by increased riparian pine growth because of earlier start of the snow-melt season and thus a lower maximum early summer lake level. Moreover, riparian pines reacted negatively to increased rainfall in June, whereas the upland pines showed a positive response. Latewood growth reacted significantly to summer temperatures. The BI chronology showed a strong correlation with warm-season temperatures, indicating an encouraging possibility of summer temperature reconstruction using middle/south boreal pine tree-ring archives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahti T, Hämet-Ahti L, Jalas J (1968) Vegetation zones and their sections in northwestern Europe. Ann Bot Fenn 3:169–211

    Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Control AC 19:716–723

    Google Scholar 

  • Biondi F, Swetnam TW (1987) Box-Jenkins models of forest interior tree-ring chronologies. Tree Ring Bull 47:71–96

    Google Scholar 

  • Biondi F, Waikul K (2004) DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30:303–311

    Article  Google Scholar 

  • Box GEP, Jenkins GM (1970) Time series analysis: forecasting and control. Holden-Day, San Francisco

    Google Scholar 

  • Briffa KR, Jones PD, Bartholin TS, Eckstein D, Schweingruber HF, Karlen W, Zetterberg P, Eronen M (1992) Fennoscandian summers from AD 500: temperature changes on short and long timescales. Clim Dyn 7:111–119

    Google Scholar 

  • Campbell R, McCarroll D, Loader NJ, Grudd H, Robertson I, Jalkanen R (2007) Blue intensity in Pinus sylvestris tree-rings: developing a new paleoclimate proxy. The Holocene 17:821–828

    Article  Google Scholar 

  • Cook ER (1985) A time series analysis approach to tree-ring standardization. PhD dissertation, University of Arizona, Tucson

  • Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree Ring Bull 41:45–53

    Google Scholar 

  • Cook E, Briffa KR, Shiyatov S, Mazepa V (1990a) Tree-ring standardization and growth-trend estimation. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the environmental science. Kluwer Academic Publishers, Dordrecht, pp 104–123

    Chapter  Google Scholar 

  • Cook E, Shiyatov S, Mazepa V (1990b) Estimation of the mean chronology. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the environmental science. Kluwer Academic Publishers, Dordrecht, pp 123–132

    Chapter  Google Scholar 

  • Dore MHI (2005) Climate change and changes in global precipitation patterns: what do we know? Environ Int 31:1167–1181

    Article  PubMed  Google Scholar 

  • Eriksson S (1951) Undersökningar angående sambandet mellan grundvattenståndet och barrskogens tillväxt. Kungl Vattenfallsstyrelsen Förrådsbyrån, Stockholm, p 65

    Google Scholar 

  • Eronen M, Zetterberg P, Briffa KR, Lindholm M, Meriläiinen J, Timonen M (2002) The supra-long Scots pine tree-ring record for Finnish Lapland: part 1, chronology construction and initial inferences. Holocene 12:673–680

    Article  Google Scholar 

  • Esper J, Frank DC, Timonen M, Zorita E, Wilson RJS, Luterbacher J, Holzkämper S, Fischer N, Wagner S, Nievergelt D, Verstege A, Büntgen U (2012) Orbital forcing of tree-ring data. Nat Clim Change 2:862–866

    Article  Google Scholar 

  • Frei C, Schöll R, Fukutome S, Schmidli J, Vidale PL (2006) Future change of precipitation extremes in Europe: intercomparison of scenarios from regional climate models. J Geophys Res. doi:10.1029/2005JD005965

    Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, New York

    Google Scholar 

  • Fritts HC, Swetnam TW (1989) Dendroecology: a tool for evaluating variations in past and present forest environments. Adv Ecol Res 19:111–188

    Article  Google Scholar 

  • Fritts HC, Mosimann JE, Bottorff CP (1969) A revised computer program for standardizing tree-ring series. Tree Ring Bull 29:15–20

    Google Scholar 

  • Grudd H, Briffa KR, Karlén W, Bartholin TS, Jones PD, Kromer B (2002) A 7400-year tree-ring chronology in northern Swedish Lapland: natural climatic variability expressed on annual to millenial timescales. Holocene 12:657–665

    Article  Google Scholar 

  • Helama S, Holopainen J, Timonen M, Ogurtsov MG, Lindholm M, Meriläinen J, Eronen M (2004a) Comparison of living-tree and subfossil ringwidths with summer temperatures from 18th, 19th and 20th centuries in northern Finland. Dendrochronologia 21:147–154

    Article  Google Scholar 

  • Helama S, Lindholm M, Timonen M, Eronen M (2004b) Detection of climate signal in dendrochronological data analysis: a comparison of tree-ring standardization methods. Theor Appl Climatol 79:239–254

    Article  Google Scholar 

  • Helama S, Lindholm M, Meriläinen J, Timonen M, Eronen M (2005) Multicentennial ring-width chronologies of Scots pine along north-south gradient across Finland. Tree Ring Res 61:21–32

    Article  Google Scholar 

  • Helama S, Mielikäinen K, Timonen M, Eronen M (2008a) Finnish supra-long tree-ring chronology extended to 5634 BC. Norsk Geografisk Tidsskr 62:271–277

    Article  Google Scholar 

  • Helama S, Vartiainen M, Kolström T, Peltola H, Meriläinen J (2008b) X-ray microdensitometry applied to subfossil tree-rings: growth characteristics of ancient pines from the southern boreal forest zone in Finland at intra-annual to centennial time-scales. Veg Hist Archaeobot 17:675–686

    Article  Google Scholar 

  • Helama S, Läänelaid A, Tietäväinen H, Macias Fauria M, Kukkonen IT, Holopainen J, Nielsen JK, Valovirta I (2010a) Late Holocene climatic variability reconstructed from incremental data from pines and pearl mussels—a multi-proxy comparison of air and subsurface temperatures. Boreas 39:734–748

    Article  Google Scholar 

  • Helama S, Macias Fauria M, Mielikäinen K, Timonen M, Eronen M (2010b) Sub-Milankovitch solar forcing of past climates: mid and late Holocene perspectives. GSA Bull 122:1981–1988

    Article  Google Scholar 

  • Helama S, Vartiainen M, Kolström T, Meriläinen J (2010c) Dendrochronological investigation of wood extractives. Wood Sci Technol 44:335–351

    Article  CAS  Google Scholar 

  • Helama S, Tuomenvirta H, Venäläinen A (2011) Boreal and subarctic soils under climatic change. Global Planet Change 79:37–47

    Article  Google Scholar 

  • Helama S, Bégin Y, Vartiainen M, Peltola H, Kolström T, Meriläinen J (2012a) Quantifications of dendrochronological information from contrasting microdensitometric measuring circumstances of experimental wood samples. Appl Radiat Isot 70:1014–1023

    Article  PubMed  CAS  Google Scholar 

  • Helama S, Läänelaid A, Raisio J, Tuomenvirta H (2012b) Mortality of urban pines in Helsinki explored using tree rings and climate records. Trees 26:353–362

    Article  Google Scholar 

  • Helama S, Seppä H, Bjune AE, Birks HJB (2012c) Fusing pollen-stratigraphic and dendroclimatic proxy data to reconstruct summer temperature variability during the past 7.5 ka in subarctic Fennoscandia. J Paleolimnol 48:272–286

    Article  Google Scholar 

  • Helama S, Mielikäinen K, Timonen M, Herva H, Tuomenvirta H, Venäläinen A (2013) Regional climatic signals in Scots pine growth with insights into snow and soil associations. Dendrobiology 70:27–34

    Article  Google Scholar 

  • Henttonen H (1984) The dependence of annual ring indices on some climatic factors. Acta For Fenn 186:1–38

    Google Scholar 

  • Hilasvuori E, Berninger F, Sonninen E, Tuomenvirta H, Jungner H (2009) Stability of climate signal in carbon and oxygen isotope records and ring width from Scots pine (Pinus sylvestris L.) in Finland. J Quat Sci 24:469–480

    Article  Google Scholar 

  • Hundhausen U (2004) The climate signal of tree-rings in Scots pine (Pinus sylvestris L.) living along lakeshores in northern Norway. A contribution to the dendroclimatological interpretation of subfossil pines. Diplomarbeit, Zur Erlangung des akademischen Grades, Diplom-Holzwirt, Im Fachbereich Biologie der Universität Hamburg

  • Jalkanen R (1993) Defoliation of pines caused by injury to roots resulting from low temperatures. Finn For Res Inst Res Pap 451:77–88

    Google Scholar 

  • Kirchhefer AJ (2000) Dendroclimatology on Scots pine (Pinus sylvestris L.) in northern Norway. Doctoral dissertation. Department of Biology, Faculty of Science, University of Tromso, Norway

  • Kirdyanov A, Hughes M, Vaganov E, Schweingruber F, Silkin P (2003) The importance of early summer temperature and date of snow melt for tree growth in the Siberian Subarctic. Trees 17:61–69

    Article  Google Scholar 

  • Kozlowski TT (2002) Physiological-ecological impacts of flooding on riparian forest ecosystems. Wetlands 22:550–561

    Article  Google Scholar 

  • Kuusisto E (2006) Lake and river systems in Finland. Finn Environ 23:49–58

    Google Scholar 

  • Linderholm HW, Gunnarson BE (2005) Summer temperature variability in central Scandinavia during the last 3600 years. Geogr Ann 87A:231–241

    Article  Google Scholar 

  • Mátyás C, Ackzell L, Samuel CJA (2004) EUFORGEN technical guidelines for genetic conservation and use for Scots pine (Pinus sylvestris). International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • McCarroll D, Pettigrew E, Luckman A, Guibal F, Edouard JL (2002) Blue reflectance provides a surrogate for latewood density of high-latitude pine tree-rings. Arct Antarct Alp Res 34:450–453

    Article  Google Scholar 

  • Melvin TM, Grudd H, Briffa KR (2013) Potential bias in ‘updating’ tree-ring chronologies using regional curve standardisation: re-processing 1500 years of Torneträsk density and ring-width data. Holocene 23:364–373

    Article  Google Scholar 

  • Miina J (2000) Dependence of tree-ring, earlywood and latewood indices of Scots pine and Norway spruce on climatic factors in eastern Finland. Ecol Model 132:259–273

    Article  Google Scholar 

  • Moir AK, Leroy SAG, Helama S (2011) Role of substrate on the dendroclimatic response of Scots pine from varying elevations in northern Scotland. Can J For Res 41:822–838

    Article  Google Scholar 

  • Monserud RA (1986) Time-series analyses of tree-ring chronologies. For Sci 32:349–372

    Google Scholar 

  • Mosteller F, Tukey JW (1977) Data analysis and regression: a second course in statistics. Addison-Wesley, Reading

    Google Scholar 

  • Musselman KN, Molotch NP, Brooks PD (2008) Effects of vegetation on snow accumulation and ablation in a mid-latitude sub-alpine forest. Hydrol Process 22:2767–2776

    Article  Google Scholar 

  • Naiman RJ, Decamps H (1997) The ecology of interfaces: riparian zones. Annu Rev Ecol Syst 28:621–658

    Article  Google Scholar 

  • Räisänen J (2007) How reliable are climate models? Tellus 59A:2–29

    Google Scholar 

  • Räisänen J, Joelsson R (2001) Changes in average and extreme precipitation in two regional climate model experiments. Tellus 53A:547–566

    Google Scholar 

  • Schweingruber FH, Bartholin TS, Schär E, Briffa KR (1988) Radiodensitometric-dendroclimatological conifer chronologies from Lapland (Scandinavia) and the Alps (Switzerland). Boreas 17:559–566

    Article  Google Scholar 

  • Sutinen M-L, Holappa T, Kujala K (1999) Seasonal changes in soil temperature and in the frost hardiness of Scots pine roots under subarctic conditions: comparison with soil temperature and snow-cover under different simulated winter conditions. Phyton 39:213–218

    Google Scholar 

  • Tietäväinen H, Tuomenvirta H, Venäläinen A (2010) Annual and seasonal mean temperatures in Finland during the last 160 years based on gridded temperature data. Int J Climatol 30:2247–2256

    Article  Google Scholar 

  • Tuononen E, Vähäsöyrinki E, Österlund P (1981) Effects of water level fluctuations on land cultivation and on the stand of trees on lake shores. Natl Board Waters Rep 206:1–125

    Google Scholar 

  • Vaganov EA, Hughes MK, Kirdyanov AV, Schweinguber FH, Silkin PP (1999) Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400:149–151

    Article  CAS  Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213

    Article  Google Scholar 

  • Wilson R, Loader N, Rydval M, Paton H, Frith A, Mills C, Crone A, Edwards C, Larsson L, Gunnarson B (2011) Reconstructing Holocene climate from tree rings—the potential for a long chronology from the Scottish Highlands. Holocene 22:3–11

    Article  Google Scholar 

  • Yamaguchi DK (1991) A simple method for crossdating increment cores from living trees. Can J For Res 21:414–416

    Article  Google Scholar 

  • Ylhäisi JS, Tietäväinen H, Peltonen-Sainio P, Venäläinen A, Eklund J, Räisänen J, Jylhä K (2010) Growing season precipitation in Finland under recent and projected climate. Nat Hazards Earth Syst Sci 10:1563–1574

    Article  Google Scholar 

  • Zhang T (2005) Influence of the seasonal snow cover on the ground thermal regime: an overview. Rev Geophys. doi:10.1029/2004RG000157

    Google Scholar 

  • Zhang T, Barry RG, Gilichinsky D, Bykhovets SS, Sorokovikov VA, Ye J (2001) An amplified signal of climatic change in soil temperatures during the last century at Irkutsk, Russia. Clim Change 49:41–76

    Article  Google Scholar 

Download references

Acknowledgments

This study was largely conducted during the pre-conference fieldweek of the World Dendro 2010, the 8th International Conference on Dendrochronology, at the Mekrijärvi Research Station, University of Eastern Finland, also supported by The Bert Bolin Centre for Climate Research, Stockholm University. We thank the organizers of the fieldweek, Taneli Kolström (University of Eastern Finland), Paul J. Krusic, Håkan Grudd, and Björn Gunnarsson (Stockholm University) for hosting the fieldweek and for preparing the excellent working conditions at the locality. We also wish to thank all participants of the fieldweek for discussions and inspiring atmosphere during those days. Two anonymous reviewers are thanked for their constructive comments. This study was also supported by the Academy of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuli Helama.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 155 kb)

About this article

Cite this article

Helama, S., Arentoft, B.W., Collin-Haubensak, O. et al. Dendroclimatic signals deduced from riparian versus upland forest interior pines in North Karelia, Finland. Ecol Res 28, 1019–1028 (2013). https://doi.org/10.1007/s11284-013-1084-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-013-1084-3

Keywords

Navigation