Skip to main content
Log in

A Cooperative Transmission Scheme for the Secure Wireless Multicasting

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a wireless multicast scenario with secrecy constraints is considered, where the source wishes to send a common message to two intended destinations in the presence of a passive eavesdropper. One destination is equipped with multiple antennas, and all of the other three nodes are equipped with a single antenna. Different to the conventional direct transmission, we propose a cooperative transmission scheme based on the cooperation between the two destinations. The basic idea is to divide the multicast scenario into two cooperative unicast transmissions at two phases and the two destinations help each other to jam the eavesdropper in turns. Such a cooperative transmission does not require the knowledge of the eavesdropper’s channel state information. Both analytic and numerical results demonstrate that the proposed cooperative scheme can achieve zero-approaching outage probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. In practice, \(D_1\) can implement more sophisticated maximum likelihood (ML) or minimum mean square error (MMSE) detections. The use of ZF detection in this paper is due to its simplicity and the convenience of analysis

  2. Note that larger diversity gains can be achieved at \(D_2\) when the \(D_1\) share its antennas to relay the secret message \(u\), as shown in [14].

References

  1. Wyner, A. (Jan. 1975). The wire-tap channel. Bell Systems and Technology Journal, 54(8), 1355–1387.

    Google Scholar 

  2. Csiszár, I., & Körner, J. (May 1978). Broadcast channels with confidential messages. IEEE Transactions on Information Theory, 24(3), 339–348.

  3. Leung-Yan-Cheong, S., & Hellman, M. (1978). The gaussian wire-tap channel. IEEE Transactions on Information Theory, 24(4), 451–456.

    Article  MATH  MathSciNet  Google Scholar 

  4. Li, Z., Trappe, W., & Yates, R. (Mar. 2007). Secret communication via multi-antenna transmission. In 41st Annual conference on information sciences and systems, (pp. 905–910), Baltimore, MD.

  5. Khisti, A., & Wornell, G. W. (2010). Secure transmission with multiple antennas part II: The mimome wiretap channel. IEEE Transactions on Information Theory, 56(11), 5515–5532.

    Article  MathSciNet  Google Scholar 

  6. Oggier, F., & Hassibi, B. (2011). The secrecy capacity of the mimo wiretap channel. IEEE Transactions on Information Theory, 57(8), 4961–4972.

    Article  MathSciNet  Google Scholar 

  7. Goel, S., & Negi, R. (2008). Guaranteeing secrecy using artificial noise. IEEE Transactions on Wireless Communications, 7(6), 2180–2189.

    Article  Google Scholar 

  8. Zhou, X., & McKay, M. R. (2010). Secure transmission with artificial noise over fading channels: Achievable rate and optimal power allocation. IEEE Transactions on Vehicular Technology, 59(8), 3831–3842.

    Article  Google Scholar 

  9. Tekin, E., & Yener, A. (Jun. 2008). The general gaussian multiple-access and two-way wiretap channels: Achievable rates and cooperative jamming. IEEE Transactions on Information Theory, 54(6), 2735–2751.

    Google Scholar 

  10. Krikidis, I., Thompson, J., & McLaughlin, S. (2009). Relay selection for secure cooperative networks with jamming. IEEE Transactions on Wireless Communications, 8(10), 5003–5011.

    Article  Google Scholar 

  11. Krikidis, I., Thompson, J. S., Grant, P. M., & McLaughlin, S. (2010). Power allocation for cooperative-based jamming in wireless networks with secrecy constraints. In IEEE GLOBECOM Workshops (GC Wkshps), (pp. 1177–1181).

  12. Dehghan, M., Goeckel, D., Ghaderi, M., & Ding, Z. (2012). Energy efficiency of cooperative jamming strategies in secure wireless networks. IEEE Transactions on Wireless Communications, 11(9), 3025–3029.

    Article  Google Scholar 

  13. Dong, L., Han, Z., Petropulu, A. P., & Poor, H. V. (2010). Improving wireless physical layer security via cooperating relays. IEEE Transactions on Signal Processing, 58(3), 1875–1888.

    Article  MathSciNet  Google Scholar 

  14. Ding, Z., Leung, K. K., Goeckel, D. L., & Towsley, D. (2011). Opportunistic relaying for secrecy communications: Cooperative jamming vs. relay chatting. IEEE Transactions on Wireless Communications, 10(6), 1725–1729.

    Article  Google Scholar 

  15. Khisti, A., Erez, U., & Wornell, G. W. (2006). Fundamental limits and scaling behavior of cooperative multicasting in wireless networks. IEEE Transactions on Information Theory, 52(6), 2762–2770.

    Article  MATH  MathSciNet  Google Scholar 

  16. del Coso, A., Simeone, O., Barness, Y., & Ibars, C. (2006). Outage capacity of two-phase space-time coded cooperative multicasting. In Fortieth Asilomar conference on signals, systems and computers, (pp. 666–670).

  17. del Coso, A., Simeone, O., Bar-Ness, Y., & Ibars, C. (2007). Space-time coded cooperative multicasting with maximal ratio combining and incremental redundancy. In IEEE international conference on communications, (pp. 6079–6084).

  18. Sarkar, M. Z. I., Ratnarajah, T., & Sellathurai, M. (2009). Secure wireless multicasting through rayleigh fading channels: A secrecy tradeoff. In First UK-India international workshop on cognitive wireless systems (UKIWCWS), India.

  19. Li, Q., & Ma, W.-K. (2011). Multicast secrecy rate maximization for miso channels with multiple multi-antenna eavesdroppers. In IEEE international conference on communications (ICC).

  20. Mohammadi, J., Kaliszan, M., Stanczak, S., & Schreck, J. (2012). Secrecy capacity limits of multiple antenna multiple eavesdropper multicast. In Conference record of the forty sixth Asilomar conference on signals, systems and computers (ASILOMAR), (pp. 1896–1900).

  21. Rupp, M., Mecklenbrauker, C., & Gritsch, G. (2003). High diversity with simple space time block-codes and linear receivers. In Proceedings of IEEE global telecommunication conference (GLOBECOM’03), (vol. 1, pp. 302–306).

  22. Leow, C. Y., Ding, Z., & Leung, K. (Jul. 2009). Linear precoded cooperative transmission protocol for wireless broadcast channels. In Proceedings of IEEE international symposium on information theory.

  23. Foschini, G. J., Chizhik, D., Gans, M. J., Papadias, C., & Valenzuela, R. A. (2003). Analysis and performance of some basic space-time architectures. IEEE Journal on Selected Areas in Communications, 21(3), 303–320.

    Article  Google Scholar 

  24. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series and products (7th ed.). London: Academic Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Xu.

Additional information

This work was supported in part by the National Natural Science Foundation of China (No. 61271272), the Intercollegiate Key Project of Nature Science of Anhui Province (No. KJ2012A283), and the National High Technology Research and Development Program of China (863 Program) with Grant No. 2012AA01A502.

Appendix

Appendix

Proof of Theorem 1

For \(N=2\), from (12), we have

$$\begin{aligned} P_{out}^{(2)}&\mathop {\le }\limits ^{(a)} Pr \left( \frac{\min \{\gamma _1,\gamma _2\}}{1+\frac{|h_{SE}|^2}{|h_{E2}|^2}+\frac{|h_{SE}|^2}{|\mathbf {h}_{ez}|^2}} <2^{2R}\right) \nonumber \\&\le Pr \left( \frac{\min \{\gamma _1,\gamma _2\}}{1+\frac{2|h_{SE}|^2}{\min \{|h_{E2}|^2,|\mathbf {h}_{ez}|^2\}}} <2^{2R}\right) \nonumber \\&\mathop {=}\limits ^{(b)} Pr \left( \frac{x_1}{1+2x_2} <2^{2R}\right) , \end{aligned}$$
(15)

where \((a)\) is obtained by fixing \(\rho =0\) and \((b)\) is obtained by defining \(x_1=\min \{\gamma _1,\gamma _2\}\) and \(x_2=\frac{z_1}{z_2}\) with \(z_2=\min \{|h_{E2}|^2,|\mathbf {h}_{ez}|^2\}\). When \(N=2\), according to (5), the PDF of \(\gamma _1\) is exponential distributed. So \(x_1\) is also exponential distributed with PDF

$$\begin{aligned} f_{x_1}(x_1)=\frac{2}{P}e^{-\frac{2x_1}{P}}\hbox { for }x_1>0. \end{aligned}$$

Thus, continuing from (15), we have

$$\begin{aligned} P_{out}^{(2)}&\le \mathbf {E}_{x_2} \left[ F_{x_1}\left( \left( 1+2x_2\right) 2^{2R}\right) \right] \nonumber \\&= \mathbf {E}_{x_2} \left[ 1-\exp \left\{ -\frac{2^{2R+1}(1+2x_2)}{P}\right\} \right] \nonumber \\&= 1-e^{-\frac{\epsilon }{2}}\mathbf {E}_{x_2} [e^{-\epsilon x_2}] , \end{aligned}$$
(16)

where \(\epsilon =2^{2(R+1)}/P\) and \(\mathbf {E}_{x_2}\) denotes the expectation with respect to the variable \(x_2\).

Since the PDFs of \(z_1\) and \(z_2\) are \(f_{z_1}(z_1)=e^{-z_1}\) \(f_{z_2}(z_2)=2e^{-2z_2}\) when \(N=2\), the cumulative density function (CDF) of \(x_2\) can be obtained as

$$\begin{aligned} F_{x_2}(x_2)&=\int \limits _{0}^{\infty }\left( \int \limits _{0}^{x_2\cdot z_2} f_{z_1} d z_1\right) f_{z_2} d z_2\nonumber \\&=1-\frac{2}{x_2+2}. \end{aligned}$$
(17)

So the PDF of \(x_2\) can be calculated as

$$\begin{aligned} f_{x_2}(x_2)=\frac{2}{(2+x_2)^2} \hbox { for } x_2>0. \end{aligned}$$

Then the outage probability can be upper bounded as

$$\begin{aligned} P_{out}^{(2)}&\le 1-e^{-\frac{\epsilon }{2}} \int \limits _0^{\infty } \frac{2e^{-\epsilon x}}{(x_2+2)^2} d x_2 \nonumber \\&= 1-e^{-\frac{\epsilon }{2}}\left( -2e^{2\epsilon }\int \limits _2^{\infty } e^{-\epsilon t}d\frac{1}{t}\right) \nonumber \\&= 1-e^{-\frac{\epsilon }{2}}\left[ 2e^{2\epsilon }\left( \frac{e^{-2\epsilon }}{2}-2\epsilon \int \limits _{2\epsilon }^{\infty } \frac{e^{-z}}{z}dz\right) \right] \nonumber \\&= 1-e^{-\frac{\epsilon }{2}}\left( 1+2\epsilon \cdot e^{2\epsilon }E_i(-2\epsilon )\right) . \end{aligned}$$
(18)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, P., Xu, X. A Cooperative Transmission Scheme for the Secure Wireless Multicasting. Wireless Pers Commun 77, 1239–1248 (2014). https://doi.org/10.1007/s11277-013-1563-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1563-4

Keywords

Navigation