Skip to main content
Log in

Substrate contribution on free radical scavenging capacity of carotenoid extracts produced from Blakeslea trispora cultures

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Blakeslea trispora produces carotenoids mixtures consisting mainly of lycopene, γ-carotene and β-carotene, together with trace amounts of other carotenoid precursors. The yield of these carotenoids and their composition are greatly affected by culture substrate. The scavenging capacity of carotenoids extract from cultures of B. trispora growing in various substrates was estimated using the 2,2-diphenyl-1-picrylhydrazyl method. Fractions enriched in β-carotene, γ-carotene and lycopene, obtained after column chromatography in alumina basic II, were also examined. Substrates containing starch and oils mixture, Ni2+, and that with pantothenic acid presented higher antioxidant activity. An increase in the antioxidant activity of the crude carotenoid extract compared to that of the isolated fractions enriched in β-carotene, γ-carotene and lycopene respectively, observed in most samples, indicated a possible synergistic effect. The results are of interest and by expanding this study to more substrates and other microorganisms- producing antioxidants, a formulation of extract with high free radical scavenging potential could be produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen RG (1993) Free radicals and differentiation: the interrelationship of development and aging. In: Yu BP (ed) Free radicals in aging. CRC Press, London, pp 11–39

    Google Scholar 

  • Ausich RL (1997) Commercial opportunities for carotenoid production by biotechnology. Pure Appl Chem 69:2169–2173

    Article  CAS  Google Scholar 

  • Britton G (1995) Chapter 2: UV/Visible Spectroscopy. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids Volume 1B: Spectroscopy. Birkhäuser Verlag, Basel, pp 13–62

    Google Scholar 

  • Coleman HR, Chan CC, Ferris FL III, Chew EY (2008) Age-related macular degeneration. Lancet 372:1835–1845

    Article  CAS  Google Scholar 

  • Craft NE (1992) Carotenoid reversed-phase high-performance liquid chromatography methods: reference compendium. Meth Enzymol 213:185–201

    Article  CAS  Google Scholar 

  • Di Mascio P, Kaiser S, Sies H (1989) Lycopene as most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys 274:532–538

    Article  CAS  Google Scholar 

  • Echaverri-Erasum C, Johnson EA (2002) Fungal carotenoids. In: Khachatourians GG, Arora DK (eds) Applied mycology and biotechnology. Elsevier, Amsterdam, pp 45–87

    Google Scholar 

  • El-Agamey GM, Lowe A, McGarvey DJ, Mortensen A, Phillip DM, Truscott TG, Young AJ (2004) Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch Biochem Biophys 430:37–48

    Article  CAS  Google Scholar 

  • Erdman JW, Ford NA, Lindshield BL (2009) Are the health attributes of lycopene related to its antioxidant function? Arch Biochem Biophys 483:229–235

    Article  CAS  Google Scholar 

  • Fang YZ, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18:872–879

    Article  CAS  Google Scholar 

  • Feofilova EP, Tereshina VM, Memorskaya AS, Dul’kin LM, Goncharov NG (2006) Fungal lycopene: the biotechnology of its production and prospects for its application in medicine. Microbiology 75:629–633

    Article  CAS  Google Scholar 

  • Fuhrman B, Ben-Yaish L, Attias J, Hayek T, Aviram M (1997) Tomato lycopene and β-carotene inhibit low density lipoprotein oxidation and this effect depends on the lipoprotein vitamin E content. Nutr Metabol Cardiovasc Dis 7:433–443

    CAS  Google Scholar 

  • Fuhrman B, Volkova N, Rosenblat M, Aviram M (2000) Lycopene synergistically inhibits LDL oxidation in combination with vitamin E, glabridin, rosmarinic acid, carnosic acid, or garlic. Antioxid Red Signal 2:491–505

    Article  CAS  Google Scholar 

  • Halliwell B (1997) Antioxidants and human disease: a general introduction. Nutr Rev 5:544–552

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1990) Role off free radicals and catalytic metal ions in human diseases. Meth Enzymol 186:1–85

    Article  CAS  Google Scholar 

  • Halliwell B, Murcia MA, Chirico S, Aruoma OI (1995) Free radicals and antioxidants in food and in vivo: what they do and how they work. Crit Rev Food Sci Nutr 35:7–20

    Article  CAS  Google Scholar 

  • Hirschberg J (1999) Production of high-value compounds: carotenoids and vitamin E. Cur Opin Biotech 10:186–191

    Article  CAS  Google Scholar 

  • Jacob RA (1995) The integrated antioxidant system. Nutr Res 15:755–766

    Article  CAS  Google Scholar 

  • Kiokias S, Gordon MH (2004) Antioxidant properties of carotenoids in vitro and in vivo. Food Rev Inter 20:99–121

    Article  CAS  Google Scholar 

  • Kohlmeier L, Hasting SB (1995) Epidemiologic evidence of a role of carotenoids in cardiovascular disease prevention. Am J Clin Nutr 62:137S–143S

    Google Scholar 

  • Lee JH, Ozcelik B, Min DB (2003) Electron donation mechanisms of β-carotene as a free radical scavenger. J Food Sci 68:861–865

    Article  CAS  Google Scholar 

  • Lian F, Wang XD (2008) Enzymatic metabolites of lycopene induce Nrf2-mediated expression of phase II detoxifying/antioxidant enzymes in human bronchial epithelial cells. Inter J Canc 123:1262–1268

    Article  CAS  Google Scholar 

  • Liu D, Shi J, Ibarra AC, Kakuda Y, Xue SJ (2008) The scavenging capacity and synergistic effects of lycopene, vitamin E, vitamin C, and β-carotene mixtures on the DPPH free radical. LWT 41:1344–1349

    Article  CAS  Google Scholar 

  • Lopez-Nieto M, Costa J, Peiro E, Méndez E, Rodriguez-Sálz M, de la Fuente JL, Cabri W, Barredo JL (2004) Biotechnological lycopene production by mated fermentation of Blakeslea trispora. Appl Microbiol Biotechnol 66:153–159

    Article  CAS  Google Scholar 

  • Mantzouridou F, Tsimidou MZ (2007) Carotenoid pattern in Blakeslea trispora grown on oil-enriched substrates with regard to triacylglycerol species accumulation. Eur J Lip Sci Technol 109:3–10

    Article  CAS  Google Scholar 

  • Mares-Perlman JA, Brady WE, Klein R, Klein BEK, Bowen P, Stacewicz-Sapuntzakis M, Palta M (1995) Serum antioxidants and age-related macular degeneration in a population-based case-control study. Arch Ophthalmol 113:1518–1523

    CAS  Google Scholar 

  • Matos HR, Capelozzi VL, Gomes OF, Di Mascio P, Medeiros MHG (2001) Lycopene inhibits DNA damage and liver necrosis in rats treated with ferric nitrilotriacetate. Arch Biochem Biophys 396:171–177

    Article  CAS  Google Scholar 

  • Mein JR, Lian F, Wang XD (2008) Biological activity of lycopene metabolites: implications for cancer prevention. Nutr Rev 66:667–683

    Article  Google Scholar 

  • Mensor LL, Menezes FS, Leitao GG, Reis AS, dos Santos TC, Coube CS et al (2001) Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother Res 15:127–130

    Article  CAS  Google Scholar 

  • Molyneux P (2004) The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanak J Sci Technol 26:211–219

    CAS  Google Scholar 

  • Namiki M (1990) Antioxidants/antimutagens in food. Crit Rev Food Sci Nutr 29:273–300

    Article  CAS  Google Scholar 

  • Nishino H, Murakoshi M, Tokuda H, Satomi Y (2009) Cancer prevention by carotenoids. Arch Biochem Biophys 483:165–168

    Article  CAS  Google Scholar 

  • Olson JA, Krinsky NI (1995) Introduction: the colorful, fascinating world of the carotenoids: important physiologic modulators. FASEB J 9:1547–1550

    CAS  Google Scholar 

  • Papaioannou EH, Liakopoulou-Kyriakides M (2010) Substrate contribution on carotenoids production in Blakeslea trispora cultivations. Food Bioprod Process 88:305–311

    Article  CAS  Google Scholar 

  • Papaioannou E, Roukas T, Liakopoulou-Kyriakides M (2008) Effect of biomass pre-treatment and solvent on β-carotene and lycopene selective extraction from Blakeslea trispora cells. Prep Biochem Biotechnol 38:246–256

    Article  CAS  Google Scholar 

  • Papaioannou EH, Liakopoulou-Kyriakides M, Christofilos D, Arvanitidis I, Kourouklis G (2009) Raman spectroscopy for intracellular monitoring of carotenoid in Blakeslea trispora. Appl Biochem Biotechnol 159:478–487

    Article  CAS  Google Scholar 

  • Rodriguez-Amaya DB (2001) A guide to carotenoid analysis in foods. OMNI Research. ILSI Press, Washington, DC, pp 14–22

    Google Scholar 

  • Rodriquez-Amaya DB (2003) Carotenoids. In: Caballero B (ed) Encyclopedia of food science and nutrition. Academic Press, New York, pp 927–943

    Chapter  Google Scholar 

  • Seddon JM, Ajani UA, Sperduto RD, Hiller R, Blair N, Burton TC, Farber MD, Gragoudas ES, Haller J, Miller DT (1994) Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye disease case-control study group. J Am Med Assoc (JAMA) 272:1413–1420

    Article  CAS  Google Scholar 

  • Shixian Q, Dai Y, Kakuda Y, Shi J, Mittal G, Yeung D, Jiang Y (2005) Synergistic anti-oxidative effects of lycopene with other bioactive compounds. Food Rev Inter 21:295–311

    Article  CAS  Google Scholar 

  • Sies H (2007) Total antioxidant capacity: appraisal of a concept. J Nutr 137:1493–1495

    CAS  Google Scholar 

  • Stahl W, Junghans A, de Boer DE, Briviba K, Sies H (1998) Carotenoid mixtures protect multilamellar liposomes against oxidative damage: synergistic effects of lycopene and lutein. FEBS Lett 427:305–308

    Article  CAS  Google Scholar 

  • Takaichi S, Ishidsu JI (1992) Characterization of carotenoids in photosynthetic bacteria. Meth Enzymol 213:374–386

    Article  CAS  Google Scholar 

  • Tereshina VM, Memorskaya AS, Feovilova EP (2002) Dormant cells in the development cycle of Blakeslea trispora: distinct patterns of the lipid and carbohydrate composition. Microbiol 71:684–689

    Article  CAS  Google Scholar 

  • Tereshina VM, Memorskaya AS, Feovilova EP (2003) Zygote formation in Blakeslea trispora: morphological peculiarities and relationship with carotenoid synthesis. Microbiology 72:448–454

    Article  CAS  Google Scholar 

  • Tereshina VM, Memorskaya AS, Feofilova EP (2010) Lipid composition of Zygomycetous fungi Blakeslea trispora under stimulation of lycopene synthesis. Microbiology 79:34–39

    Article  CAS  Google Scholar 

  • Vandamme JE (1992) Production of vitamins, coenzymes and related biochemicals by biotechnological processes. Chem Technol Biotechnol 53:313–327

    CAS  Google Scholar 

  • Varzakakou M, Roukas T, Kotzekidou P (2010) Effect of the ratio of (+) and (−) mating type of Blakeslea trispora on carotene production from cheese whey in submerged fermentation. World J Microbiol Biotechnol. ISSN 0959-3993(Print) 1573-0972

    Google Scholar 

  • Verlangieri AJ, Kapeghian JC, El-Dean S, Bush M (1985) Fruit and vegetable consumption and cardiovascular mortality. Med Hypoth 16:7–15

    Article  CAS  Google Scholar 

  • Weisburger JH (2002) Lycopene and tomato products in health promotion. Exp Biol Med 227:924–927

    CAS  Google Scholar 

  • Werkman TA, Vam den Ende H (1973) Trisporic acid synthesis in Blakeslea trispora interaction between plus and minus mating types. Arch Microbiol 90:365–374

    CAS  Google Scholar 

  • Wertz K, Siler U, Goralczyk R (2004) Lycopene: modes of action to promote prostate health. Arch Biochem Biophys 430:127–134

    Article  CAS  Google Scholar 

  • Young AJ, Lowe GM (2001) Antioxidants and prooxidants properties of carotenoids. Arch Biochem Biophys 385:20–27

    Article  CAS  Google Scholar 

  • Young AJ, Phillip DM, Lowe GM (2004) Carotenoid antioxidant activity. In: Krinsky NI, Mayne ST, Sies H (eds) Carotenoids in health and disease. Marcel Dekkar, New York

    Google Scholar 

  • Ziegler RG, Taylor-Mayne S, Swanson CA (1996) Nutrition and lung cancer. Canc Caus Cont 7:157–177

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Liakopoulou-Kyriakides.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papaioannou, E.H., Stoforos, N.G. & Liakopoulou-Kyriakides, M. Substrate contribution on free radical scavenging capacity of carotenoid extracts produced from Blakeslea trispora cultures. World J Microbiol Biotechnol 27, 851–858 (2011). https://doi.org/10.1007/s11274-010-0527-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-010-0527-z

Keywords

Navigation