Skip to main content
Log in

Kinetics of Enhanced Substrate Consumption and Endo-β-xylanase Production by a Mutant Derivative of Humicola lanuginosa in Solid-state Fermentation

  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

Industrial byproducts namely canola meal, rice bran, sunflower meal, and wheat straw were used as substrates for endo-xylanase production by Humicola lanuginosemutant TH1 through solid substrate fermentation. The enzyme was secreted extracellularly by both wild and mutant cultures. Rice bran supported the maximum production of endo-xylanase followed by wheat straw, canola meal and sunflower meal. The highest activity was achieved after 72 h of culture and the highest yields from the above substrates were 842, 840, 610 and 608 IU per g substrate consumed respectively. The highest productivity (281 IU flask−1 h−1 corresponding to 5620 l−1 h-1) of endo-xylanase by the mutant of H. lanuginosa was 1.6-fold more than that produced by the parental organism in solid-state fermentation of rice bran at 45 °C. Maximum specific activity (180 IU mg−1 protein) and substrate consumption rates were significantly more than those reported by previous researchers on Humicola sp. The mutant possessed markedly low accompanying cellulase activity. Thermodynamic studies revealed that the mutant required significantly lower activation energy for enzyme production and higher for thermal inactivation which signified that the endogenous metabolic machinery of mutant cells exerted more protection against thermal inactivation during product formation than that needed by its parental cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • P.R. Adams (1994) ArticleTitleExtracellular amylase activites of Rhizomucor pusillus and Humicola lamuginosaat initial stages of growth Mycopathologia. 128 139–141 Occurrence Handle10.1007/BF01138474 Occurrence Handle1:CAS:528:DyaK2MXmsV2gsLc%3D

    Article  CAS  Google Scholar 

  • S. Aiba A.E. Humphrey N.F. Millis (1973) Biochemical Engineering EditionNumber2 Academic Press New York 92–127

    Google Scholar 

  • S. Al-Asheh Z. Duvniak (1994) ArticleTitleCharacteristics of phytase produced by Aspergillus carbonarius NRC 401121 in canola meal Acta Biotechnologica. 14 223–237 Occurrence Handle10.1002/abio.370140302 Occurrence Handle1:CAS:528:DyaK2MXitVWjtbs%3D

    Article  CAS  Google Scholar 

  • L. Anand P.J. Vithayathil (1996) ArticleTitleXylan-degrading enzymes from thermophilic fungus Humicola lanuginosa, action pattern of xylanase and β-glucosidase on xylans, xylooligomers and arabinooligomers. Journal of Fermentation and Bioengineering 81 511–517 Occurrence Handle10.1016/0922-338X(96)81471-1 Occurrence Handle1:CAS:528:DyaK28XltVShsLg%3D

    Article  CAS  Google Scholar 

  • T. Cesar V. Mrsa (1996) ArticleTitlePurification and properties of the xylanase produced by Thermomyces lanuginosus Enzyme and Microbial Technology 19 289–296 Occurrence Handle10.1016/0141-0229(95)00248-0 Occurrence Handle1:CAS:528:DyaK28XltVOisr4%3D

    Article  CAS  Google Scholar 

  • B.S. Chadha K. Jaswinder K. Rubinder H.S. Saini S. Singh (1999) ArticleTitleXylanase production by Thermomyces lanuginosus wild and mutant strains World Journal of Microbiology and Biotechnology 15 195–198 Occurrence Handle10.1023/A:1008815808137 Occurrence Handle1:CAS:528:DyaK1MXmvFant7k%3D

    Article  CAS  Google Scholar 

  • A. Converti M. Del Borghi (1997) ArticleTitleSimultaneous effects of immobilization and substrate protection on the thermodynamics of glucose isomerase activity and inactivation Enzyme and Microbial Technology 21 511–517 Occurrence Handle10.1016/S0141-0229(97)00021-5 Occurrence Handle1:CAS:528:DyaK2sXntVWjtb4%3D

    Article  CAS  Google Scholar 

  • A. Converti J.M. Dominguez (2001) ArticleTitleInfluence of temperature and pH on xylitol production from xylose byDebarryomyces hansenii Biotechnology and Bioengineering 75 39–45 Occurrence Handle10.1002/bit.1162 Occurrence Handle1:CAS:528:DC%2BD3MXmvFGht7Y%3D

    Article  CAS  Google Scholar 

  • R. Silva ParticleDa D.K. Yin K.K. Park (1994) ArticleTitleApplication of thermostable xylanases from Humicola sp for pulp improvement Journal of Fermentation and Bioengineering 77 109–111

    Google Scholar 

  • E. dos Santos T. Piovan I.C. Roberto A.M. Milagres (2003) ArticleTitleKinetics of the solid state fermentation of sugarcane bagasse by Thermoascus auranticus for the production of xylanase Biotechnology Letters 25 13–16 Occurrence Handle10.1023/A:1021709610251 Occurrence Handle1:CAS:528:DC%2BD38XpslOhsbk%3D

    Article  CAS  Google Scholar 

  • R. Duenas R.P. Tengerdy M. Gutierrez-corea (1995) ArticleTitleCellulase production by mixed fungi in solid-substrate fermentation of bagasse World Journal of Microbiology and Biotechnology 11 333–337 Occurrence Handle1:CAS:528:DyaK2MXntVOisb8%3D

    CAS  Google Scholar 

  • M.M. Gilbert D.C. Yaguchi K.K.Y. Watson C. Wong Breuil J.N. Saddler (1993) ArticleTitleA comparison of two xylanases from the thermophilic fungi Thielavia terrestrisand Thermoascus crustaceus Applied Microbiology and Biotechnology 40 508–514 Occurrence Handle10.1007/BF00175740 Occurrence Handle1:CAS:528:DyaK2cXlt1yns70%3D

    Article  CAS  Google Scholar 

  • A. Hanif A. Yasmin M.I. Rajoka (2004) ArticleTitleProduction, repression and derepression of β-cellobiosidase synthesis in Aspergillus niger Bioresource Technology 94 311–319 Occurrence Handle10.1016/j.biortech.2003.12.013 Occurrence Handle1:CAS:528:DC%2BD2cXks1Gmtbs%3D

    Article  CAS  Google Scholar 

  • I Haq S. Khurshid S. Ali H. Ashraf M.A. Qadeer M.I. Rajoka (2001) ArticleTitleMutation of Aspergillus niger for hyperproduction of citric acid following fermentation of blackstrap molasses World Journal of Microbiology and Biotechnology 17 35–37

    Google Scholar 

  • I.U. Haq S. Idress M.I. Rajoka (2002) ArticleTitleProduction of lipases by Rhizopus oligosporos by solid-state fermentation Process Biochemistry 37 637–641 Occurrence Handle10.1016/S0032-9592(01)00322-3

    Article  Google Scholar 

  • E. Kalogeris F. Iniotaki E. Topakas P. Christakopoulos D. Kekos B.J. Macris (2003) ArticleTitlePerformance of an intermittent agitation rotating drum type bioreactor for solid state fermentation of wheat straw Bioresource Technology 86 207–213 Occurrence Handle10.1016/S0960-8524(02)00175-X Occurrence Handle1:STN:280:DC%2BD3s7mvF2htg%3D%3D

    Article  CAS  Google Scholar 

  • S.W. Kang Y.S. Park J.S. Lee H.I. Hong S.W. Kim (2004) ArticleTitleProduction of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass Bioresource Technology 91 153–156 Occurrence Handle10.1016/S0960-8524(03)00172-X Occurrence Handle1:CAS:528:DC%2BD3sXosVWrtbc%3D

    Article  CAS  Google Scholar 

  • R.A. Lockington L. Rodbourn S. Barnett C.J. Carter J.M. Kelly (2002) ArticleTitleRegulation by carbon and nitrogen sources of a family of cellulases in Aspergillus nidulans Fungal Genetics and Biology 37 190–196 Occurrence Handle10.1016/S1087-1845(02)00504-2 Occurrence Handle1:CAS:528:DC%2BD38XotFGgsLs%3D

    Article  CAS  Google Scholar 

  • G.L. Miller (1959) ArticleTitleUse of dinitrosalicylic acid (DNS) for determination of reducing sugars Analytical Chemistry 31 426–428 Occurrence Handle1:CAS:528:DyaG1MXmtFKiuw%3D%3D

    CAS  Google Scholar 

  • P. Nigam D. Singh (1994) ArticleTitleSolid state (substrate) fermentation systems and their applications in biotechnology Journal of Basic Microbiology 34 405–423 Occurrence Handle1:CAS:528:DyaK2MXislOrurw%3D

    CAS  Google Scholar 

  • P. Pandey (2002) ArticleTitleProduction of cellulase free thermostable xylanase by an isolated of Aspergillus niger PPI, utilizing various lignocellulosic wastes World Journal of Microbiology and Biotechnology 18 281–283 Occurrence Handle10.1023/A:1014999728406 Occurrence Handle1:CAS:528:DC%2BD38Xkt1aktr8%3D

    Article  CAS  Google Scholar 

  • M.I. Rajoka A. Bashir K.A. Malik (1997) ArticleTitleMutagenesis of Cellulomonas biazoteafor enhanced production of xylanases Bioresource Technology 62 99–108 Occurrence Handle10.1016/S0960-8524(97)00116-8 Occurrence Handle1:CAS:528:DyaK1cXlvVOiug%3D%3D

    Article  CAS  Google Scholar 

  • M.I. Rajoka A. Bashir M.R.A. Hussain K.A. Malik (1998) ArticleTitleMutagenesis of Cellulomonas biazotea for improved production of cellulases Folia Microbiologica. 43 15–22 Occurrence Handle1:CAS:528:DyaK1cXksF2htg%3D%3D

    CAS  Google Scholar 

  • M.I. Rajoka F. Latif S. Khan R. Shahid (2004) ArticleTitleKinetics of improved productivity of β-galactosidase by a cycloheximide-resistant mutant of Kluyveromyces marxianus Biotechnology Letters 26 741–746 Occurrence Handle1:CAS:528:DC%2BD2cXjtFaksb0%3D

    CAS  Google Scholar 

  • A.M. Rincon A.C. Codon F. Castrejon T. Benitez (2001) ArticleTitleImproved properties of baker’s yeast mutant resistant to 2-deoxy-d-glucose Applied and Environmental Microbiology 67 4279–4285 Occurrence Handle1:CAS:528:DC%2BD3MXmslWisb8%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Rajoka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajoka, M.I., Huma, T., Khalid, A.M. et al. Kinetics of Enhanced Substrate Consumption and Endo-β-xylanase Production by a Mutant Derivative of Humicola lanuginosa in Solid-state Fermentation. World J Microbiol Biotechnol 21, 869–876 (2005). https://doi.org/10.1007/s11274-004-6030-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-004-6030-7

Keywords

Navigation