Skip to main content
Log in

Impact of Alkalisation of the Soil on the Anatomy of Norway Spruce (Picea abies) Needles

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, we evaluated the needle anatomy of Norway spruce trees growing on a territory that was exposed to different alkaline dust pollution. The anatomy of the needles of spruce growing on a polluted site in the vicinity of the Kunda cement plant (Northeast Estonia) was compared with the anatomy and physiological state of the needles from an unpolluted site. The needles from polluted sites had a significantly larger average mesophyll area and thicker epidermis. These needles also had significantly smaller average vascular bundles and xylem areas than needles from the unpolluted site. Although in the alkalised growth conditions, the mesophyll area enlarged, the number of damaged mesophyll cells increased, and as a result, the concentration of chlorophylls decreased reducing the photosynthetic potential of trees. Our study indicates that even though cement dust pollution has practically ceased in the area, the alkalised soil is affecting physiological processes in trees for a long time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albrechtová, J., Janáček, J., Lhotáková, Z., Radochová, B., & Kubinová, L. (2007). Novel efficient methods for measuring mesophyll anatomical characteristics from fresh thick sections using stereology and confocal microscopy: application on acid rain-treated Norway spruce needles. Journal of Experimental Botany, 58(6), 1451–1461.

    Article  Google Scholar 

  • Apple, M., Tiekotter, K., Snow, M., Young, J., Soeldner, A., Phillips, D., et al. (2002). Needle anatomy changes with increasing tree age in Douglas-fir. Tree Physiology, 22(2–3), 129–136.

    Article  Google Scholar 

  • Campbell, M. M., & Sederoff, R. R. (1996). Variation of lignin content and composition. Mechanism of control and implications for the genetic improvement of plants. Plant Physiology, 110(1), 3–13.

    CAS  Google Scholar 

  • Cesar, V., & Lepeduš, H. (2001). Peroxidase activity, soluble proteins and chlorophyll content in spruce (Picea abies L. Karst.) needles affected by cement dust. Acta Botanica Croatica, 60(2), 227–235.

    CAS  Google Scholar 

  • Farmer, A. M. (1993). The effects of dust on vegetation—a review. Environmental Pollution, 79(1), 63–75.

    Article  CAS  Google Scholar 

  • Fink, S. (1991). Structural changes in conifer needles due to Mg and K deficiency. Fertilizer Research, 27(1), 23–27.

    Article  CAS  Google Scholar 

  • Forczek, S. T., Benada, O., Kofroňová, O., Sigler, K., & Matucha, M. (2011). Influence of road salting on the adjacent Norway spruce (Picea abies) forest. Plant, Soil and Environment, 57(7), 344–350.

    Google Scholar 

  • Gebauer, R., Volařik, D., Urban, J., Børja, I., Nagy, N. E., Eldhuset, T. D., et al. (2011). Effect of thinning on anatomical adaptation of Norway spruce needles. Tree Physiology, 31(10), 1103–1113.

    Article  Google Scholar 

  • Gebauer, R., Volařík, D., Urban, J., Børja, I., Nagy, N. E., Eldhuset, T. D., et al. (2012). Effects of different light conditions on the xylem structure of Norway spruce needles. Trees—structure and function, 26(4), 1079–1089.

    Article  Google Scholar 

  • Gobran, G. R., & Clegg, S. (1996). A conceptual model for nutrient availability in the mineral soil–root system. Canadian Journal of Soil Science, 76(2), 125–131.

    Article  Google Scholar 

  • Godde, D., Divoux, S., Höfert, M., Klein, C., & Gonsior, B. (1991). Quantitative and localized element analysis in cross-sections of spruce [Picea abies (L.) Karst.] needles with different degrees of damage. Trees—structure and function, 5(2), 95–100.

    Google Scholar 

  • Gostin, I. (2010). Structural changes in silver fir needles in response to air pollution. Analele Universitatii din Oradea, Fascicula Biologie, 17(2), 300–305.

    Google Scholar 

  • Hatfield, R., & Vermerris, W. (2001). Lignin formation in plant. The dilemma of linkage specificity. Plant Physiology, 126(4), 1351–1357.

    Article  CAS  Google Scholar 

  • Havas, P., & Huttunen, S. (1972). The effect of air pollution on the radial growth of Scots pine (Pinus sylvestris L.). Biological Conservation, 4(5), 361–368.

    Article  Google Scholar 

  • Huttunen, S., & Manninen, S. (2005). Scots pine and the changing environment—needle responses. Polish Botanical Studies, 19, 133–141.

    Google Scholar 

  • Jätkusuutlikkuse aruanne (2007). Kunda Nordic Heidelberg Cement Croup. http://www.heidelbergcement.com/NR/rdonlyres/72E6CB9D-FD3E-4E6E-A2B8-A415FE7FC531/0/J%C3%A4tkusuutlikkusearuanne.pdf. Accessed 12 November 2012.

  • Jokela, A., Sarjala, T., Kaunisto, S., & Huttunen, S. (1997). Effects of foliar potassium concentration on morphology, ultrastructure and polyamine concentrations of Scots pine needles. Tree Physiology, 17(11), 677–685.

    Article  CAS  Google Scholar 

  • Kaasik, M., Alliksaar, T., Ivask, J., & Loosaar, J. (2005). Spherical fly ash particles from oil shale fired power plants in atmospheric precipitations. Possibilities of quantitative tracing. Oil Shale, 22(4), 547–561.

    CAS  Google Scholar 

  • Karolewski, P., Giertych, M. J., Oleksyn, J., & Žytkowiak, R. (2005). Differential reaction of Pinus sylvestris, Quercus robur and Q. petraea trees to nitrogen and sulfur pollution. Water, Air, and Soil Pollution, 160(1–4), 95–108.

    Article  CAS  Google Scholar 

  • Kask, R., Ots, K., Mandre, M., & Pikk, J. (2008). Scots pine (Pinus sylvestris L.) wood properties in an alkaline air pollution environment. Trees—structure and function, 22(6), 815–823.

    Article  CAS  Google Scholar 

  • Klõšeiko, J. (2005). Concentration of carbohydrates in conifer needles near Kunda cement plant, Estonia, nine years after reduced dust pollution. Metsanduslikud Uurimused/Forestry Studies, 42, 87–94.

    Google Scholar 

  • Lepeduš, H., & Cesar, V. (2004). Biochemical and anatomical changes of spruce needles exposed to urban dust pollution. Acta Botanica Hungarica, 46(1–2), 201–210.

    Article  Google Scholar 

  • Liblik, V., Pensa, M., & Kundel, H. (2000). Temporal changes in atmospheric air pollution in industrial areas of Ida- and Lääne-Viru counties. Metsanduslikud Uurimused/Forestry Studies, 33, 17–36.

    Google Scholar 

  • Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591–592.

    CAS  Google Scholar 

  • Lin, J., Jach, M. E., & Ceulemans, R. (2001). Stomata density and needle anatomy of Scots pine (Pinus sylvestris) are affected by elevated CO2. New Phytologist, 150(3), 665–674.

    Article  Google Scholar 

  • Lukjanova, A., & Mandre, M. (2010). Effects of alkalization of the environment on the anatomy of Scots pine (Pinus sylvestris) needles. Water, Air, and Soil Pollution, 206(1–4), 13–22.

    Article  CAS  Google Scholar 

  • Luomala, E.-M., Laitinen, K., Sutinen, S., Kellomäki, S., & Vapaavuori, E. (2005). Stomatal density, anatomy and nutrient concentrations of Scots pine needles are affected by elevated CO2 and temperature. Plant, Cell & Environment, 28(6), 733–749.

    Article  CAS  Google Scholar 

  • Maier-Maercker, U. (1998). Image analysis of the stomatal cell walls of Picea abies (L.) Karst. in pure and ozone-enriched air. Trees—structure and function, 12(3), 181–185.

    Google Scholar 

  • Makoto, K., & Koike, T. (2007). Effects of nitrogen supply on photosynthetic and anatomical changes in current-year needles of Pinus koraiensis seedlings grown under two irradiances. Photosynthetica, 45(1), 99–104.

    Article  Google Scholar 

  • Mandre, M. (1995). Changes in the nutrient composition of trees. In M. Mandre (Ed.), Dust pollution and forest ecosystems. A study of conifers in an alkalized environment. Publication 3 (pp. 44–65). Tallinn: Institute of Ecology.

    Google Scholar 

  • Mandre, M. (2000). Changes in forest ecosystems of Viru county influenced by industrial air pollution. Metsanduslikud Uurimused/Forestry Studies, 33, 37–64.

    Google Scholar 

  • Mandre, M. (2002a). Stress concepts and plants. Metsanduslikud Uurimused/Forestry Studies, 36, 9–16.

    Google Scholar 

  • Mandre, M. (2002b). Stress induced changes in the lignin content of the needles of Norway spruce and Scots pine. Metsanduslikud Uurimused/Forestry Studies, 36, 72–81.

    Google Scholar 

  • Mandre, M. (2009). Vertical gradients of mineral elements in Pinus sylvestris crown in alkalised soil. Environmental Monitoring and Assessment, 159(1–4), 111–124.

    Article  CAS  Google Scholar 

  • Mandre, M., & Korsjukov, R. (2007). The quality of stemwood of Pinus sylvestris in an alkalised environment. Water, Air, and Soil Pollution, 182(1–4), 163–172.

    Article  CAS  Google Scholar 

  • Mandre, M., & Lukjanova, A. (2008). Anatomical structure and localisation of lignin in needles and shoots of Scots pine (Pinus sylvestris L.) growing in a habitat with varying environmental characteristics. Metsanduslikud Uurimused/Forestry Studies, 49, 37–46.

    Google Scholar 

  • Mandre, M., & Lukjanova, A. (2011). Biochemical and structural characteristics of Scots pine (Pinus sylvestris L.) in an alkaline environment. Estonian Journal of Ecology, 60(4), 264–283.

    Article  Google Scholar 

  • Mandre, M., Rauk, J., & Ots, K. (1995). In M. Mandre (Ed.), Dust pollution and forest ecosystems. A study of conifers in an alkalized environment. Publication 3 (pp. 112–116). Tallinn: Institute of Ecology.

    Google Scholar 

  • Mandre, M., Bogdanov, V., & Rahi, M. (2002). Impact of alkaline air pollution and alkalisation of the environment on the structure and quantity of epicuticular waxes on needles of Picea abies. Metsanduslikud Uurimused/Forestry Studies, 36, 107–119.

    Google Scholar 

  • Mandre, M., Kiviste, A., & Köster, K. (2011). Environmental stress and forest ecosystem. Forest Ecology and Management, 262(2), 53–55.

    Article  Google Scholar 

  • Mandre, M., Tuju, K.-L., Pärn, H., Pikk, J., Paasrand, K., & Kört, M. (2012). Variation in the morphological structure of the crown of Norway spruce in North Estonian alkalised soil. Forest Ecology and Management, 278, 9–16.

    Article  Google Scholar 

  • Marco, H. F. (1939). The anatomy of spruce needles. Journal of Agricultural Research, 58(5), 357–368.

    Google Scholar 

  • Marin, M., Koko, V., Duletić-Laušević, S., & Marin, P. D. (2009). Effects of air pollution on needles of Cedrus atlantica (Endl.) Carriere in industrial area of Pančevo (Serbia). Botanica Serbica, 33(1), 69–73.

    Google Scholar 

  • Miksche, G. E., & Yasuda, S. (1977). About the lignin of the leaves and needles of some angiosperm and gymnosperm (Über die Lignine der Blätter und Nadeln einiger Angiospermen and Gymnospermen). Holzforschung, 31(2), 57–59.

    Article  CAS  Google Scholar 

  • Moura, J. C. M. S., Bonine, C. A. V., Viana, J. O. F., Dornelas, M. C., & Mazzafera, P. (2010). Abiotic and biotic stresses and changes in the lignin content and composition in plants. Journal of Integrative Plant Biology, 52(4), 360–376.

    Article  CAS  Google Scholar 

  • Niinemets, Ü., Lukjanova, A., Turnbull, M. H., & Sparrow, A. D. (2007). Plasticity in mesophyll volume fraction modulates light-acclimation in needle photosynthesis in two pines. Tree Physiology, 27(8), 1137–1151.

    Article  Google Scholar 

  • Ots, K., & Rauk, J. (2000). Defoliation of conifers in the North Estonian industrial region. Metsanduslikud Uurimused/Forestry Studies, 33, 98–109.

    Google Scholar 

  • Pallardy, S. G. (2008). Physiology of woody plants. Amsterdam: Academic.

    Google Scholar 

  • Pärn, H. (2002). Relationships between radial growth of Scots pine and climate in the north eastern industrial region of Estonia. Metsanduslikud Uurimused/Forestry Studies, 36, 47–61.

    Google Scholar 

  • Polle, A., Otter, T., & Seifert, F. (1994). Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies). Plant Physiology, 106(1), 53–60.

    CAS  Google Scholar 

  • Rauk, J. (1995). Radial increment of trees. In M. Mandre (Ed.), Dust pollution and forest ecosystems. A study of conifers in an alkalized environment. Publication 3 (pp. 112–116). Tallinn: Institute of Ecology.

    Google Scholar 

  • Ruzin, S. E. (1999). Plant microtechnique and microscopy (p. 322). New York, Oxford: Oxford University Press.

    Google Scholar 

  • Skuodienė, L. (2001). The effect of light stressor on metabolites in the needles of Picea abies (L.) Karst. Baltic Forestry, 7(2), 31–36.

    Google Scholar 

  • Soukupová, J., Rock, B. N., & Albrechtová, J. (2001). Comparative study of two spruce species in a polluted mountainous region. New Phytologist, 150(1), 133–145.

    Article  Google Scholar 

  • Sutinen, S. (1987). Cytology of Norway spruce needles. I. Changes during ageing. European Journal of Forest Pathology, 17(2), 65–73.

    Article  Google Scholar 

  • Sutinen, S., & Koivisto, L. (1995). Microscopic structure of conifer needles as a diagnostic tool in the field. In M. Munawar, O. Hänninen, S. Roy, N. Munawar, L. Kärenlampi, & D. Brown (Eds.), Bioindicators of environmental health (pp. 73–81). Amsterdam: SPB Academic Publishing.

    Google Scholar 

  • Sutinen, S., & Saarsalmi, A. (2008). Needle structure in relation to boron fertilization in Picea abies (L.) Karst. stands suffering from growth disturbance. Baltic Forestry, 14(2), 98–102.

    Google Scholar 

  • Tervahattu, H., Lodenius, M., & Tulisalo, E. (2001). Effects of the reduction of cement plant pollution on the foliar and bark chemical composition of Scots pine. Boreal Environment Research, 6(4), 251–259.

    CAS  Google Scholar 

  • Vernon, L. P. (1960). Spectrophotometric determination of chlorophylls and pheophytins in plant extracts. Analytical Chemistry, 32(9), 1144–1150.

    Article  CAS  Google Scholar 

  • Walles, B., Nyman, B., & Aldén, T. (1973). On the ultrastructure of needles of Pinus sylvestris L. Studia Forestalia Suecica, 106, 1–26.

    Google Scholar 

  • Wieser, G., Tegischer, K., Tausz, M., Haberle, K. H., Grams, T. E. E., & Matyssek, R. (2002). Age effects on Norway spruce (Picea abies) susceptibility to ozone uptake: a novel approach relating stress avoidance to defense. Tree Physiology, 22(8), 583–590.

    Article  Google Scholar 

  • Ziegler, H. (1997). Some open questions in tree physiology. In H. Rennenberg, W. Eschrich, & H. Ziegler (Eds.), Trees —contributions to modern tree physiology (pp. 531–544). Leiden: Backhuys Publishers.

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Estonian Ministry of Education and Research (project no. 0170021 s08), Kunda Nordic Cement (contract 21.05.2010) and by the European Regional Development Fund, Environmental Conservation and Environmental Technology R&D Programme project BioAtmos (3.2.0802.11-0043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aljona Lukjanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukjanova, A., Mandre, M. & Saarman, G. Impact of Alkalisation of the Soil on the Anatomy of Norway Spruce (Picea abies) Needles. Water Air Soil Pollut 224, 1620 (2013). https://doi.org/10.1007/s11270-013-1620-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1620-3

Keywords

Navigation