Skip to main content
Log in

Assessment of the Phytoremediation Potential of Salvinia minima Baker Compared to Spirodela polyrrhiza in High-strength Organic Wastewater

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Salvinia minima combines several advantages for being used in aquatic phytoremediation. The objectives of this work were to compare the growth kinetics and productivity of S. minima and Spirodela polyrrhiza in high-strength synthetic organic wastewater (HSWW) and to evaluate the growth characteristics of S. minima in various culture media, including anaerobic effluents from pig wastewater (PWAE). It was found that the Relative Growth Rate (RGR) of S. minima was significantly higher (p < 0.05) compared to the RGR of S. polyrrhiza in Hutner Medium (HM) and in HSWW. Also, S. minima showed a 1.5 fold productivity and a 2.3 fold productivity, compared to S. polyrrhiza in HM and HSWW, respectively. Diauxic growth of S. minima was observed preferentially under pH control and there was a simultaneous consumption of two nitrogen sources. Productivity of S. minima was similar in pig waste anaerobic effluents (PWAE) and in HM without ammonium nitrate and amended with ammonium sulphate (MHM + AS), at an initial NH4 concentration of 35 mg l−1. Above this level, the productivity was found to decrease as the initial ammonium concentration increased, in both media. Growth was completely inhibited at 140 mg l−1 in the PWAE. In summary, S. minima is a better option than S. polyrrhiza for treating high-strength organic wastewater and lagoons should be operated at a maximum initial ammonium–nitrogen concentration of 70 mg l−1 and at a pH of 5.0 or 6.0. Likewise, the initial density should be maintained in the range of 7 to 15 g dw m−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5
Fig. 6

Similar content being viewed by others

References

  • Agami, M., & Reddy, K. R. (1989). Inter-relationships between Salvinia rotundifolia and Spirodela polyrrhiza at various interaction stages. Journal of Aquatic Plant Management, 27, 96–102.

    Google Scholar 

  • Amrane, A., Adour, L., & Couriol, C. (2005). An unstructured model for the diauxic growth of Penicillium camembertii on glucose and arginine. Biochemical Engineering Journal, 24, 125–133.

    Article  CAS  Google Scholar 

  • Aoi, T., & Hayashi, T. (1996). Nutrient removal by water lettuce (Pistia stratiotes). Water Science and Technology, 34, 7–8.

    Article  Google Scholar 

  • Beadle, C. L. (1993). Growth analysis. In D. O. Hall, J. M. O. Scurlock, H. R. Bolhàr-Nordenkampf, R. C. Leegood & S. P. Long (Eds.), Photosynthesis and production in a changing environment. A field and laboratory manual (pp. 36–46). London: Chapman & Hall.

    Google Scholar 

  • Bello, P. (1997). Evaluación de la capacidad de remoción de nutrientes eutroficantes de Salvinia minima Baker en efluentes anaeróbicos de excretas porcinas (pp. 69). Xalapa, Ver: Universidad Veracruzana.

    Google Scholar 

  • Bergmann, B. A., Cheng, J., Classen, J., & Stomp, A. M. (2000a). Nutrient removal from swine lagoon effluent by duckweed. Transactions of the American Society of Agricultural Engineers, 43, 263–269.

    CAS  Google Scholar 

  • Bergmann, B. A., Cheng, J., Classen, J., & Stomp, A. M. (2000b). In vitro selection of duckweed geographical isolates for potential use in swine lagoon effluent renovation. Bioresource Technology, 73, 13–20.

    Article  CAS  Google Scholar 

  • Bonomo, L., Pastorelli, G., & Zambon, N. (1997). Advantages and limitations of duckweed-based wastewater treatment systems. Water Science and Technology, 35, 239–246.

    Article  CAS  Google Scholar 

  • Brandt, B. W., Kelpin, F. D. L., van Leeuwen, I. M. M., & Kooijman, S. A. L. M. (2004). Modelling microbial adaptation of changing availability of substrates. Water Research, 38, 1003–1013.

    Article  CAS  Google Scholar 

  • Caicedo, J. R., Van der Steen, N. P., Arce, O., & Gijzen, H. J. (2000). Effect of total ammonia nitrogen concentration and pH on growth rates of duckweed (Spirodela polyrrhiza). Water Research, 34, 3829–3835.

    Article  CAS  Google Scholar 

  • Clement, B., & Merlin, G. (1995). The contribution of ammonia and alkalinity to landfill leachate toxicity to duckweed. Science of the Total Environment, 170, 71–79.

    Article  CAS  Google Scholar 

  • Costa, M. L., Santos, M. C., & Carrapico, F. (1999). Biomass characterization of Azolla filiculoides grown in natural ecosystems and wastewater. Hydrobiologia, 415, 323–327.

    Article  Google Scholar 

  • Dickinson, M. B., & Miller, T. E. (1998). Competition among small, free-floating, aquatic plants. American Midland Naturalist, 140, 55–67.

    Article  Google Scholar 

  • Driever, S. M., van Nes, E. H., & Roijackers, R. M. M. (2005). Growth limitation of Lemna minor due to high plant density. Aquatic Botany, 81, 245–251.

    Article  Google Scholar 

  • El-Gendy, A. S., Biswas, N., & Bewtra, J. K. (2005). A floating aquatic system employing water hyacinth for municipal landfill leachate treatment:effect of leachate characteristics on the plant growth. Journal of the Environmental Engineering and Science, 4, 227–240.

    Article  CAS  Google Scholar 

  • Ferguson, A. R., & Bollard, E. G. (1969). Nitrogen metabolism of Spirodela oligorrhiza. 1. Utilization of ammonium, nitrate and nitrite. Planta, 88, 344–352.

    Article  CAS  Google Scholar 

  • Gijzen, H. J., & Veenstra,S. (2000). Duckweed-based wastewater treatment for rational resource recovery and reuse. In E. J. Olguin, G. Sánchez & E. Hérnandez (Eds.), Environmental biotechnology and cleaner bioprocesses (pp. 83–100). London: Taylor & Francis.

    Google Scholar 

  • HACH (1995). Adapted from standard methods for the examination of water and wastewater 4500-NH3 B & C Company B and C.

  • Hernández, E., Olguín, E. J., Trujillo, S., & Vivanco, J. (1997). Recycling and treatment of anaerobic effluents from pig waste using Lemna sp. under temperate climatic conditions. In D. L.Wise (Ed.), Global environmental biotechnology (pp. 293–304). Amsterdam: Elsevier.

    Google Scholar 

  • Huebert, D. B., McLarth, A. L., Shay, J. M., & Robinson, G. G. C. (1990). Axenic culture of Lemna trisulca. Aquatic Botany, 38, 295–301.

    Article  Google Scholar 

  • Korner, S., Vermaat, J. E., & Veenstra, S. (2003). The capacity of duckweed to treat wastewater: Ecological considerations for a sound design. Journal of Environmental Quality, 32, 1583–1590.

    Article  Google Scholar 

  • Kremling, A., Bettenbrock, K., Laube, B., Jahreis, K., Lengeler, J. W., & Gilles, E. D. (2001). The organization of metabolic reaction networks. III. Application for diauxic growth on glucose and lactose. Metabolic Engineering, 3, 362–379.

    Article  CAS  Google Scholar 

  • Lee, T. K., Lee, S. M., & Lee, W. S. (1999). Preferential use of acetate over glucose involves acetate-mediated inhibition of glucose uptake during diauxic growth of carrot cells. Plant and Cell Physiology, 40, 1046–1052.

    CAS  Google Scholar 

  • Loehr, R. (1974). Agricultural waste management, problems, processes and approaches. New York: Academic.

    Google Scholar 

  • Nakamura, Y., Sawada, T., & Inoue, E. (2001). Mathematical model for ethanol production from mixed sugars by Pichia stipitis. Journal of Chemical Technology and Biotechnology, 76, 586–592.

    Article  CAS  Google Scholar 

  • Olguín, E. J., Galicia, S., Mercado, G., & Pérez, T. (2003a). Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. Journal of Applied Phycology, 15, 249–257.

    Article  Google Scholar 

  • Olguin, E. J., Hernandez, E., & Ramos, I. (2002). The effect of both different light conditions and the pH value on the capacity of Salvinia minima BAKER for removing cadmium, lead and chromium. Acta Biotechnologica, 22, 121–131.

    Article  CAS  Google Scholar 

  • Olguín, E. J., Pérez-Pérez, T., & Pérez-Orozco, A. (2005a). Evaluation of Pb (II) removal by Salvinia minima and the role of green rhizospheric microalgae in continuous operated lagoons. In L. Yongding (Ed.), 10th International Conference on Applied Phycology. Kunming: China, July 24–30.

    Google Scholar 

  • Olguin, E. J., Rodriguez, D., Sanchez, G., Hernandez, E., & Ramirez, M. E. (2003b). Productivity, protein content and nutrient removal from anaerobic effluents of coffee wastewater in Salvinia minima ponds, under subtropical conditions. Acta Biotechnologica, 23, 259–270.

    Article  CAS  Google Scholar 

  • Olguín, E. J., Sánchez-Galván, G., & Pérez-Pérez, T. (2004). Adsorption, accumulation and precipitation of lead in batch and continuous operated lagoons by Salvinia minima and rhizospheric microalgae. In A. Chakrabarty (Ed.), VII International Symposium on Environmental Biotechnology. Chicago, USA, June 18–21.

  • Olguin, E. J., Sanchez-Galvan, G., Perez-Perez, T., & Perez-Orozco, A. (2005b). Surface adsorption, intracellular accumulation and compartmentalization of Pb(II) in batch-operated lagoons with Salvinia minima as affected by environmental conditions, EDTA and nutrients. Journal of Industrial Microbiology & Biotechnology, 32, 577–586.

    Article  CAS  Google Scholar 

  • Oron, G., Porath, D., & Jansen, H. (1987). Performance of the duckweed species Lemna gibba on municipal wastewater for effluent renovation and protein production. Biotechnology and Bioengineering, 29, 258–268.

    Article  CAS  Google Scholar 

  • Oron, G., Wildschut, L. R., & Porath, D. (1984). Wastewater recycling by duckweed for protein production and effluent renovation. Water Science and Technology, 17, 803–817.

    Google Scholar 

  • Porath, D., & Pollock, J. (1982). Ammonia stripping by duckweed and its feasibility in circulating aquaculture. Aquatic Botany, 13, 125–131.

    Article  CAS  Google Scholar 

  • Reddy, K. R., & Debusk, W. F. (1985). Growth characteristics of aquatic macrophytes cultured in nutrient-enriched water. II. Azolla, duckweed and Salvinia. Economic Botany, 39, 200–208.

    Google Scholar 

  • Robarge, W. P., Edwards, P. A., & Johnson, B. (1983). Water and waste water analysis for nitrate via nitration of salicylic acid. Communications in Soil Science and Plant Analysis, 14, 1207–1215.

    Article  CAS  Google Scholar 

  • Vermaat, J. E., & Hanif, M. K. (1998). Performance of common duckweed species (Lemnaceae) and the waterfern Azolla filiculoides on different types of waste water. Water Research, 32, 2569–2576.

    Article  CAS  Google Scholar 

  • Whiteman, J. B., & Room, P. M. (1991). Temperatures lethal to Salvinia molesta MITCHEL. Aquatic Botany, 40, 27–35.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Council of Science and Technology (CONACYT) through two different grants: z-039 and P-46697-Z. Laura Escobar is kindly acknowledged for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenia J. Olguín.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olguín, E.J., Sánchez-Galván, G. & Pérez-Pérez, T. Assessment of the Phytoremediation Potential of Salvinia minima Baker Compared to Spirodela polyrrhiza in High-strength Organic Wastewater. Water Air Soil Pollut 181, 135–147 (2007). https://doi.org/10.1007/s11270-006-9285-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-006-9285-9

Keywords

Navigation