Skip to main content

Advertisement

Log in

Hydrological Prediction in a Tropical Watershed Dominated by Oxisols Using a Distributed Hydrological Model

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Hydrological models have been used in many places of the world in order to support practitioners with respect to watershed management actions. The goal of this research was to apply the Lavras Simulation of Hydrology (LASH model) to a Brazilian tropical watershed dominated by Oxisols, to estimate maximum, minimum and mean stream flows for both current land-use (“scenario 1”) and other regional trend land-use scenarios (“scenario 2”—pasture into eucalyptus; and “scenario 3”—eucalyptus into pasture). This model is a continuous, distributed and semi-conceptual model for simulation of different hydrological components on a daily basis. The model had a good performance with respect to the “scenario 1”, resulting in Nash-Sutcliffe coefficients equal to 0.81, 0.82 and 0.98 for minimum, maximum and mean discharges, respectively. When “scenario 2” was simulated, it was found that minimum, mean and maximum stream flows had their values reduced in average by 7.39 %, 13.84 % and 20.38 %, respectively. On the contrary, it was observed in “scenario 3” an increase in average by 0.23 %, 0.44 % and 1.19 % for minimum, mean and maximum stream flows, respectively. With respect to water yield, scenario 2 resulted in a mean reduction of 119 mm, whereas for scenario 3 the difference was not so pronounced in relation to the current land use. Results obtained in scenario 2 are troublesome since this watershed drains into an important regional Hydroelectric Power Plant Reservoir and this approach needs to be considered by the Minas Gerais State electric energy company for its planning strategies for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agirre U, Goni M, López JJ, Gimena FN (2005) Application of a unit hydrograph based on subwatershed division and comparison with Nash’s instantaneous unit hydrograph. Catena 64:321–332

    Article  Google Scholar 

  • Ahmad MM, Ghumman AR, Ahmad S (2009) Estimation of Clark’s Instantaneous Unit Hydrograph parameters and development of direct surface runoff hydrograph. Water Resour Manag 23:2417–2435

    Article  Google Scholar 

  • Alexandre AMB, Martins ESPR (2005) Regionalização de vazões médias de longo período para o estado do Ceará. Rev Bras Recurs Hídr 10(3):93–102

    Google Scholar 

  • Alvarenga CC, Mello CR, Mello JM, Viola MR (2011) Spatial continuity of the saturated hydraulic conductivity in soil of the Alto Rio Grande basin, MG. Rev Bras Ciênc Solo 35(5):1745–1757

    Article  Google Scholar 

  • Araujo AR (2006) Solos da bacia do Alto Rio Grande (MG): base para estudos hidrológicos e aptidão agrícola. Dissertation, Federal University of Lavras

  • Arnold JG, Srinivasin R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment: part I: model development. J Am Water Resour Assoc 34(1):73–89

    Article  Google Scholar 

  • Benaman J, Shoemaker CA, Haith DA (2005) Calibration and validation of soil and water assessment tool on an agricultural watershed in upstate New York. J Hydrolog Eng 10(5):363–374

    Article  Google Scholar 

  • Beskow S (2009) LASH model: a hydrological simulation tool in GIS framework. Dissertation, Federal University of Lavras

  • Beskow S, Mello CR, Norton LD, Curi N, Viola MR, Avanzi JC (2009) Soil erosion prediction in the Grande River, Brazil using distributed modeling. Catena 79(1):49–59

    Article  Google Scholar 

  • Beskow S, Mello CR, Norton LD (2011a) Development, sensitivity and uncertainty analysis of LASH model. Sci Agric 68(3):265–274

    Google Scholar 

  • Beskow S, Mello CR, Norton LD, Silva AM (2011b) Performance of a distributed semi-conceptual hydrological model under tropical watershed conditions. Catena 86:160–171

    Article  Google Scholar 

  • Beven KJ (2001) Rainfall-runoff modelling: the primer. Wiley, Chichester

    Google Scholar 

  • Booker DJ, Snelder TH (2012) Comparing methods for estimating flow duration curves at ungauged sites. J Hydrol 434–435:78–94

    Article  Google Scholar 

  • Bormann H, Breuer L, Gräff T, Huisman JA (2007) Analyzing the effects of soil properties changes associated with land use changes on the simulated water balance: a comparison of three hydrological catchment models for scenario analysis. Ecol Model 209:29–40

    Article  Google Scholar 

  • Bosch JM, Hewlett JD (1982) A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J Hydrol 55:2–23

    Article  Google Scholar 

  • Bruijnzeel LA (1990) Hydrology of moist tropical forests and effects of conversion: a state of knowledge review. IHP. IAHS. UNESCO, pp. 224

  • Bruijnzeel LA (1996) Predicting the hydrological impacts of tropical forest conversion: the need for integrated research. In: Gash JHC, Nobre CA, Roberts JM, Victoria RL (eds) Amazonian deforestation and climate. Wiley, Chinchester

    Google Scholar 

  • Castiglioni S, Castellarin A, Montanari A (2009) Prediction of low-flow indices in ungauged basins through physiographical space-based interpolation. J Hydrol 378:272–280

    Article  Google Scholar 

  • Chaves HML, Rosa JWC, Vadas RG, Oliveira RVT (2002) Regionalização de vazões mínimas em bacias através de interpolação em Sistemas de Informação Geográfica. Rev Bras de Recurs Hídr 7(3):43–51

    Google Scholar 

  • Cornish PM (1993) The effects on logging and forest regeneration on water yield in moist eucalypt forest in New South Wales, Australia. J Hydrol 150:301–322

    Article  Google Scholar 

  • de Roo APJ, Wesseling CG, Ritsema CJ (1996) LISEM: a single event physically-based hydrologic and soil erosion model for drainage basins: I., theory, input and output. Hydrolog Process 10(8):1107–1117

    Article  Google Scholar 

  • Dong S (2008) Genetic algorithm based parameter estimation of Nash model. Water Resour Manag 22:525–533

    Article  Google Scholar 

  • Duan Q, Sorooshian S, Gupta V (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28(4):1015–1031

    Article  Google Scholar 

  • Edwards KA (1979) The water balance of the Mbeya experimental catchments. East Afr Agr Forest J 43:231–247

    Google Scholar 

  • ESRI (2004) Environmental Systems Research Institute, Redlands, CA

  • Farley KA, Jobbagy EG, Jackson RB (2005) Effects of afforestation on water yield: a global synthesis with implications for policy. Glob Chang Biol 11:1565–1576

    Article  Google Scholar 

  • Flanagan DC, Nearing MA (1998) USDA-water erosion prediction project (WEPP) hillslope profile and watershed model documentation. West Lafayette: USDA, 298 p. (NSERL Report, 10)

  • Gomes NM, Silva AM, Mello CR, Faria MA, Oliveira PM (2007) Métodos de ajuste e modelos de semivariograma aplicados ao estudo da variabilidade espacial de atributos físico-hídricos do solo. Rev Bras Ciênc Solo 31:435–443

    Article  Google Scholar 

  • Gomes NM, Mello CR, Silva AM, Beskow S (2008) Aplicabilidade do LISEM (Limburg Soil Erosion Model) para simulação hidrológica em uma bacia hidrográfica tropical. Rev Bras Ciênc Solo 32:2483–2492

    Article  Google Scholar 

  • Gottschalk L, Motovilov Y (2000) Macro-scale hydrological modeling: a Scandinavian experience. In: International Symposium on: ‘Can science and society save the water crisis in the 21st century: reports from the world’, 1., 2000, Tokyo. Anais…Tokyo: Japan Society of Hydrology and Water Resources, pp. 38–45

  • Gottschalk L, Batchvarova E, Gryning SE, Lindroth A, Melas D, Motovilov YUG, Freeh M, Heikinheimo M, Samuelsson P, Grelle A, Persson T (1999) Scale aggregation: comparison of flux estimates from NOPEX. Agr Forest Meteorol 98/99(1):103–120

    Article  Google Scholar 

  • Green CH, Tomer MD, Di Luzio M, Arnold JG (2006) Hydrologic evaluation of the soil and water assessment tool for a large tile-drained watershed in Iowa. Trans ASABE 49(2):413–422

    Google Scholar 

  • Guo Y, Quader A (2009) Derived flow-duration relationships for surface runoff dominated small urban stream. J Hydrolog Eng 14(1):42–52

    Article  Google Scholar 

  • Hlavcová K, Szolgay J, Kohnová S, Horvát O (2009) The limitations of assessing impacts of land use changes on runoff with a distributed hydrological model: case study of the Hron River. Biologia 64(3):589–593

    Article  Google Scholar 

  • Hsia YJ, Koh CC (1983) Water yield resulting from clearcutting a small hardwood basin in central Taiwan. In: Keller R (ed) Hydrology of humid tropical regions. IAHS publication n. 140, pp. 215–220

  • Jain V, Sinha R (2003) Derivation of Unit Hydrograph from GIUH analysis for a Himalayan river. Water Resour Manag 17:355–375

    Article  Google Scholar 

  • Jain SK, Singh RD, Seth SM (2000) Design flood estimation using GIS supported GIUH approach. Water Resour Manag 14:369–376

    Article  Google Scholar 

  • Khaleghi MR, Gholami V, Ghodusi J, Hosseini H (2011) Efficiency of the geomorphologic instantaneous unit hydrograph method in flood hydrograph simulation. Catena 87:163–171

    Article  Google Scholar 

  • Laaha G, Blöschl G (2005) Low flow estimates from short stream flow records—a comparison of methods. J Hydrol 306:264–286

    Article  Google Scholar 

  • Laaha G, Blöschl G (2006) A comparison of low flow regionalization methods—catchment groupint. J Hydrol 323:193–214

    Article  Google Scholar 

  • Lal R (1981) Deforestation of tropical rainforest and hydrological problems. In: Lal R, Russell EW (eds) Tropical agricultural hydrology. Wiley, New York, pp 131–140

    Google Scholar 

  • Lawson TL, Lal R, Oduro-Afriye K (1981) Rainfall redistribution and microclimatic changes over a cleared watershed. In: Lal R, Russel EW (eds) Tropical agricultural hydrology. Wiley, New York, pp 141–151

    Google Scholar 

  • Li M, Shao Q, Zhang L, Chiew FHS (2010) A new regionalization approach and its application to predict flow duration curve in ungauged basins. J Hydrol 389:137–145

    Article  Google Scholar 

  • Licciardello F, Zema DA, Zimbone SM, Bingner RL (2007) Runoff and soil erosion evaluation by the AGNPS model in a small Mediterranean watershed. Trans ASABE 50(5):1585–1593

    Google Scholar 

  • Mamun AA, Hashim A, Daoud JI (2010) Regionalisation of low flow frequency curves for the Peninsular Malaysia. J Hydrol 381:174–180

    Article  Google Scholar 

  • Matheussen B, Kirschbaum RL, Goodman IA, O’Donnell GM, Lettenmaier DP (2000) Effects of land cover change on streamflow in the interior Columbia River Basin (USA and Canada). Hydrolog Process 14:867–885

    Article  Google Scholar 

  • Mello CR, Viola MR, Norton LD, Silva AM, Weimar FA (2008) Development and application of a simple hydrologic model simulation for a Brazilian headwater basin. Catena 75(3):235–247

    Article  Google Scholar 

  • Mello CR, Viola MR, Beskow S (2010) Vazões máximas e mínimas para bacias hidrográficas da região Alto Rio Grande, MG. Ciênc Agrotec 34(2):494–502

    Article  Google Scholar 

  • Mello CR, Norton LD, Curi N, Yanagi SNM (2012) Sea surface temperature (SST) and rainfall erosivity in the Upper Grande River Basin, Southeast Brazil. Ciênc Agrotec 36(1):53–59

    Google Scholar 

  • Mosley MP, Mckerchar AI (1993) Streamflow. In: Maidment D (ed) Handbook of hydrology. McGraw-Hill, New York, pp 8.1–8.39

    Google Scholar 

  • Niehoff D, Fritsch U, Bronstert A (2002) Land-use impacts on storm-runoff generation: scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW-Germany. J Hydrol 267:80–93

    Article  Google Scholar 

  • Notter B, Macmillan L, Viviroli D, Weingartner R, Liniger H (2007) Impacts of environmental change on water resources in the Mt. Kenya region. J Hydrol 343(3/4):266–278

    Article  Google Scholar 

  • Novaes LF, Pruski FF, Queiroz DO, Rodriguez RG, Silva DD, Ramos MM (2007) Avaliação do desempenho de cinco metodologias de regionalização de vazões. Rev Bras Recurs Hídr 12(2):51–61

    Google Scholar 

  • Ott B, Uhlenbrook S (2004) Quantifying the impact of land use changes at the event and seasonal time scale using a process-oriented catchment model. Hydrol Earth Syst Sci 8:62–78

    Article  Google Scholar 

  • Ouyang W, Hao F, Wang X, Cheng H (2008) Nonpoint source pollution responses simulation for conversion cropland to forest in mountains by SWAT in China. Environ Manage 41:79–89

    Article  Google Scholar 

  • Pereira DR, Mello CR, Silva AM, Yanagi SNM (2010) Evapotranspiration and estimation of aerodynamic and stomatal conductance in a fragment of Atlantic Forest in Mantiqueira Range region, MG. Cerne 16(1):32–40

    Google Scholar 

  • Pilgrim DH, Cordery I (1993) Flood runoff. In: Maidment D (ed) Handbook of hydrology. McGraw-Hill, New York, pp 9.1–9.42

    Google Scholar 

  • Ramalho Filho A, Beek KJ (1995) Sistema de avaliação da aptidão agrícola das terras, 3rd edn. EMBRAPA-CNPS, Rio de Janeiro, p 65

    Google Scholar 

  • Sahin V, Hall MJ (1996) The effects of afforestation and deforestation on water yields. J Hydrol 178:293–309

    Article  Google Scholar 

  • Sarangi A, Madramootoo CA, Enright P, Prasher SO (2007) Evaluation of three unit hydrograph models to predict the surface runoff from a Canadian watershed. Water Resour Manag 21:1127–1143

    Article  Google Scholar 

  • Shaw EM (1994) Hydrology in practice. Chapman & Hall, London

    Google Scholar 

  • Shen HW, Julien PY (1993) Erosion and sediment transport. In: Maidment D (ed) Handbook of hydrology. McGraw-Hill, New York, pp 12.1–12.61

    Google Scholar 

  • Silva Junior OB, Bueno EO, Tucci CEM, Castro NMR (2003) Extrapolação espacial na regionalização da vazão. Rev Bras Recurs Hídr 8(1):21–37

    Google Scholar 

  • Silva AM, Oliveira PM, Mello CR, Pierangeli C (2006) Vazões mínimas e de referência para outorga na região do Alto Rio Grande, Minas Gerais. Rev Bras Eng Agríc Ambient 10(2):374–380

    Article  Google Scholar 

  • Silveira GL, Tucci CEM, Silveira ALL (1998) Quantificação de vazão em pequenas bacias sem dados. Rev Bras Recurs Hídr 3(3):111–131

    Google Scholar 

  • Singh VP, Fiorentino M (1996) Hydrologic modeling with GIS. In: Singh VP, Fiorentino M (eds) Geographical information systems in hydrology. Kluwer Academic Publishers, Dordrecht, pp 1–13

    Google Scholar 

  • Sui J (2005) Estimation of design flood hydrograph for an ungauged watershed. Water Resour Manag 19:813–830

    Article  Google Scholar 

  • Thanapakpawin P, Richey J, Thomas D, Rodda S, Campbell B, Logsdon M (2007) Effects of land-use change on the hydrologic regime of the Mae Chaem river basin, NW Thailand. J Hydrol 334:215–230

    Article  Google Scholar 

  • Tucci CEM (2003) Processos hidrológicos e os impactos do uso do solo. In: Tucci CEM, Braga B (eds) Clima e recursos hídricos no Brasil. ABRH, Porto Alegre, pp 31–76

    Google Scholar 

  • Tucci CEM (2005) Modelos hidrológicos, 2nd edn. Editora da UFRGS, Porto Alegre, p 678

    Google Scholar 

  • Vezza P, Comoglio C, Rosso M, Viglione A (2010) Low flows regionalization in North-Western Italy. Water Resour Manag 24:4049–4074

    Article  Google Scholar 

  • Viola MR, Mello CR, Acerbi FW Jr, Silva AM (2009) Modelagem hidrológica na bacia hidrográfica do Rio Aiuruoca, MG. Rev Bras Eng Agríc Ambient 13(5):581–590

    Article  Google Scholar 

  • Von Stackelberg NO, Chescheir GM, Skaggs RW, Amatya DM (2007) Simulation of the hydrologic effects of afforestation in the Tacuarembó River Basin, Uruguay. Trans ASABE 50(3):455–468

    Google Scholar 

  • Wheater HS (2008) Modeling hydrological processes in arid and semi-arid areas: in introduction to the workshop. In: Wheater HS, Sorooshian S, Sharma KD (eds) Hydrological modeling in arid and semi-arid areas. Cambridge University, New York, pp 1–20

    Google Scholar 

  • Wigmosta MS, Vail LW, Lettenmaier DP (1994) A distributed hydrology vegetation model for complex terrain. Water Resour Res 30(6):1665–1679

    Article  Google Scholar 

  • Young R, Onstad C, Bosch D, Anderson W (1987) AGNPS: a nonpoint source pollution model for evaluating agricultural watersheds. J Soil Water Conservat 44(2):168–173

    Google Scholar 

  • Zhang A, Zhang C, Fu G, Wang B, Bao Z, Zheng H (2012) Assessments of impacts of climate change and human activities on runoff with SWAT for the Huifa River Basin, Northeast China. Water Resour Manag 26:2199–2217

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank CNPq for financial support of this research and scholarships to the first and third authors, to FAPEMIG (PPM VI 068/12) and to the USDA-ARS National Soil Erosion Research Laboratory at Purdue University for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Beskow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beskow, S., Norton, L.D. & Mello, C.R. Hydrological Prediction in a Tropical Watershed Dominated by Oxisols Using a Distributed Hydrological Model. Water Resour Manage 27, 341–363 (2013). https://doi.org/10.1007/s11269-012-0189-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-012-0189-8

Keywords

Navigation