Skip to main content

Advertisement

Log in

A Scalable Framework For Segmenting Magnetic Resonance Images

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

A fast, accurate and fully automatic method of segmenting magnetic resonance images of the human brain is introduced. The approach scales well allowing fast segmentations of fine resolution images. The approach is based on modifications of the soft clustering algorithm, fuzzy c-means, that enable it to scale to large data sets. Two types of modifications to create incremental versions of fuzzy c-means are discussed. They are much faster when compared to fuzzy c-means for medium to extremely large data sets because they work on successive subsets of the data. They are comparable in quality to application of fuzzy c-means to all of the data. The clustering algorithms coupled with inhomogeneity correction and smoothing are used to create a framework for automatically segmenting magnetic resonance images of the human brain. The framework is applied to a set of normal human brain volumes acquired from different magnetic resonance scanners using different head coils, acquisition parameters and field strengths. Results are compared to those from two widely used magnetic resonance image segmentation programs, Statistical Parametric Mapping and the FMRIB Software Library (FSL). The results are comparable to FSL while providing significant speed-up and better scalability to larger volumes of data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. FMRIB Software Library (2007). FSL package. http://www.fmrib.ox.ac.uk/fsl/.

  2. SPM (2008). SPM package. http://www.fil.ion.ucl.ac.uk/spm/.

  3. Pham, D. L., Xu, C., & Prince, J. L. (2000). Current methods in medical image segmentation. Annual Review of Biomedical Engineering, 2, 315–337.

    Article  Google Scholar 

  4. Marroquin, J. L., Vemuri, B. C., Botello, S., Calderon, F., & Fernandez-Bouzas, A. (2002). An accurate and efficient bayesian method for automatic a segmentation of brain MRI. IEEE Transactions on Medical Imaging, 21(8), 934–945, August.

    Article  Google Scholar 

  5. Atkins, M. S., & Mackiewich, B. T. (1998). Fully automatic segmentation of the brain in MRI. IEEE Transactions on Medical Imaging, 17(1), 98–107.

    Article  Google Scholar 

  6. Lin, P., Yang, Y., Zheng, C.-X., & Gu, J.-W. (2004). An efficient automatic framework for segmentation of MRI brain image. In Proceedings of the fourth international conference on computer and information technology (CIT 04).

  7. Legal-Ayala, H. A., & Facon, J. (2004). Automatic segmentation of brain MRI through learning by example. In International conference on image processing (ICIP).

  8. Wu, Z., Paulsen, K. D., & Sullivan, Jr., J. M. (2005). Adaptive model initialization and deformation for automatic segmentation of t1-weighted brain MRI data. IEEE Transactions on Biomedical Engineering, 52(6), 1128–1131, June.

    Article  Google Scholar 

  9. Selvathi, D., Arulmurgan, A., Selvi, S. T. S, & Alagappan, S. (2005). MRI image segmentation using unsupervised clustering techniques. In Proceedings of the sixth international conference on computational intelligence and multimedia applications (ICCIMA 05).

  10. Wang, Z. M., Song, Q., & Soh, Y. C. (2006). MRI brain image segmentation by adaptive spatial deterministic annealing clustering. In 3rd IEEE international symposium on biomedical imaging.

  11. Mayer, A., & Greenspan, H. (2006). Segmentation of brain MRI by adaptive mean shift. In 3rd IEEE international symposium on biomedical imaging.

  12. Song, Z., Tustison, N., Avants, B., & Gee, J. (2006). Adaptive graph cuts with tissue priors for brain MRI segmentation. In 3rd IEEE international symposium on biomedical imaging.

  13. Greenspan, H., Ruf, A., & Goldberger, J. (2006). Constrained Gaussian mixture model framework for automatic segmentation of MR brain images. IEEE Transactions on Medical Imaging, 25(9), 1233–1245, September.

    Article  Google Scholar 

  14. Gu, Y., Hall, L., Goldgof, D., Kanade, P., & Murtagh, F. (2005). Sequence tolerant segmentation system of brain MRI. In IEEE international conference on systems, man and cybernetics (pp. 2936–2943). October.

  15. Dawant, B. M., Hartmann, S. L., Thirion, J.-P., Maes, F., Vandermeulen, D., & Demaerel, P. (1999). Automatic 3-D segmentation of internal structures of the head in MR images using a combination of similarity and free-form transformations: Part I, methodology and validation on normal subjects. IEEE Transactions on Medical Imaging, 18(10), 909–916, October.

    Article  Google Scholar 

  16. Baillard, C., Hellier, P., & Barillot, C. (2000). Segmentation of 3D brain structures using level sets and denseregistration. In Proceedings IEEE workshop on mathematical methods in biomedical image analysis.

  17. Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm. IEEE Transactions on Medical Imaging, 20(1), 45–57.

    Article  Google Scholar 

  18. Kiebel, S. J., Ashburner, J., Poline, J.-B., & Friston, K. J. (1997). MRI and PET coregistration—a cross validation of statistical parametric mapping and automated image registration. NeuroImage, 5, 271–279.

    Article  Google Scholar 

  19. Guillemaud, R., & Brady, J. M. (1997). Estimating the bias field of MR images. IEEE Transactions on Medical Imaging, 16(3), 238–251.

    Article  Google Scholar 

  20. Cheng, T. W., Goldgof, D. B., & Hall, L. O. (1998). Fast fuzzy clustering. Fuzzy Sets and Systems, 93, 49–56.

    Article  MATH  Google Scholar 

  21. Pal, N. R., & Bezdek, J. C. (2002). Complexity reduction for “large image” processing. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 32(5), 598–611.

    Article  Google Scholar 

  22. Eschrich, S., Ke, J., Hall, L. O., & Goldgof, D. B. (2003). Fast accurate fuzzy clustering through data reduction. IEEE Transactions on Fuzzy Systems, 11(2), 262–270.

    Article  Google Scholar 

  23. Bezdek, J. C., Hathaway, R. J., Sabin, M. J., & Tucker, W. T. (1987). Convergence theory for fuzzy C-means: Counterexamples and repairs. IEEE Transactions on Systems, Man and Cybernetics, 17(5), 873–877.

    MATH  Google Scholar 

  24. Altman, D. (1999). Efficient fuzzy clustering of multi-spectral images. In IEEE FUZZY.

  25. Hathaway, R. J., & Bezdek, J. C. (2006). Extending fuzzy and probabilistic clustering to very large data sets. Journal of Computational Statistics and Data Analysis, 51, 215–234.

    Article  MathSciNet  Google Scholar 

  26. Kolen, J. F., & Hutcheson, T. (2002). Reducing the time complexity of the fuzzy C-means algorithm. IEEE Transactions on Fuzzy Systems, 10, 263–267.

    Article  Google Scholar 

  27. Hore, P., Hall, L. O., & Goldgof, D. B. (2006). A cluster ensemble framework for large data sets. In IEEE international conference on systems, man and cybernetics.

  28. Borgelt, C., & Kruse, R. (2003). Speeding up fuzzy clustering with neural network techniques. Fuzzy Systems, 2, 852–856.

    Google Scholar 

  29. Bradley, P. S., Fayyad, U., & Reina, C. (1998). Scaling clustering algorithms to large databases. In Proceedings of the fourth international conference on knowledge discovery and data mining, KDD-1998 (pp. 9–15).

  30. Farnstrom, F., Lewis, J., & Elkan, C. (2000). Scalability for clustering algorithms revisited. ACM SIGKDD Explorations, 2, 51–57.

    Article  Google Scholar 

  31. Hore, P., Hall, L. O., & Goldgof, D. B. (2007). Single pass fuzzy C means. IEEE-FUZZ.

  32. Hore, P. (2007). Scalable frameworks and algorithms for cluster ensembles and clustering data streams. Ph.D. Dissertation, Dept. of CSE, Univ. of South Florida, May.

  33. Gupta, C., Grossman, R. (2004). GenIc: A single pass generalized incremental algorithm for clustering. In Proceedings of the fourth {SIAM} international conference on data mining (SDM 04) (pp. 22–24).

  34. Thiesson, B., Meek, C., & Heckerman, D. (2001). Accelerating EM for large databases. Machine Learning Journal, 45, 279–299.

    Article  MATH  Google Scholar 

  35. Bradley, P. S., Fayyad, U. M., & Reina, C. A. (2000). Clustering very large databases using EM mixture models. ICPR, 2, 76–80.

    Google Scholar 

  36. Karkkainen, I., & Franti, P. (2005). Gradual model generator for single-pass clustering. ICDM, 681–684.

  37. Aggarwal, C. C., Han, J., Wang, J., & Yu, P. S. (2003). A framework for clustering evolving data streams, In Proc. of VLDB.

  38. Aggarwal, C. C., Han, J., Wang, J., & Yu, P. S. (2004). A framework for projected clustering of high dimensional data streams. In Proc. of VLDB.

  39. Yang, J. (2003). Dynamic clustering of evolving streams with a single pass. In Proc. of ICDE.

  40. Nasraoui, O., Cardona, C., Rojas, C., & Gonzlez, F. (2003). Tecno-streams: Tracking evolving clusters in noisy data streams with a scalable immune system learning model. In Proc. of ICDM (pp. 235–242).

  41. Cao, F., Estery, M., Qian, W., & Zhou, A. (2006). Density-based clustering over an evolving data stream with noise. SDM.

  42. O’Callaghan, L., Mishra, N., Meyerson, A., Guha, S., & Motwani, R. (2002). Streaming-data algorithms for high-quality clustering. In Proceedings of IEEE international conference on data engineering, March.

  43. Guha, S., Meyerson, A., Mishra, N., Motwani, R., & O’Callaghan, L. (2003). Clustering data streams: Theory and practice. In IEEE transactions on knowledge and data engineering (pp. 515-528).

  44. Hathaway, R. J., & Bezdek, J. C. (1995). Optimization of clustering criteria by reformulation. IEEE Transactions on Fuzzy Systems, 3, 241–245.

    Article  Google Scholar 

  45. Tran, T. N., Wehrens, R., & Buydens, L. M. C. (2005). Clustering multispectral images: a tutorial. Chemometrics and Intelligent Laboratory Systems, 77, 3–17.

    Google Scholar 

  46. Chuang, K.-S., Tzeng, H.-L., Chen, S., Wu, J., & Chen, T.-J. (2006). Fuzzy c-means clustering with spatial information for image segmentation. Computerized Medical Imaging and Graphics, 30, 9–15.

    Article  Google Scholar 

  47. Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern classification (2nd edn.). New York: Wiley-Interscience.

    Google Scholar 

  48. Cohen, M. S., DuBois, R. D., & Zeineh, M. M. (2000). Rapid and effective correction of RF inhomogeneity for high field magnetic resonance imaging. Human Brain Mapping, 10(4), 204–211.

    Article  Google Scholar 

  49. Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155, November.

    Article  Google Scholar 

  50. Rousseau, F., Maudsley, A., Ebel, A., Darkazanli, A., Weber, P., Sivasankaran, K., et al. (2005). Evaluation of sub-voxel registration accuracy between MRI and 3D MR spectroscopy of the brain. San Diego: SPIE Medical Imaging.

    Google Scholar 

  51. Young, K., Chen, Y., Kornak, J., Matson, G. B., & Schuff, N. (2005). Classification of high dimensional, multi-spectral data sets using computational mechanics. Physical Review Letters, 94, 09870.

    Google Scholar 

  52. Maudsley, A. A., Darkazanli, A., Alger, J. R., Hall, L. O., Schuff, N., Studholme, C., et al. (2006). Comprehensive processing, display, and analysis for in vivo MR spectroscopic imaging. NMR in Biomedicine, 19, 492–503.

    Article  Google Scholar 

  53. MIDAS (2008). MIDAS Project Website. http://midas.med.miami.edu/.

  54. Hore, P., Hall, L. O., & Goldgof, D. B. (2007). Creating streaming iterative soft clustering algorithms. NAFIPS.

  55. Hore, P., Hall, L. O., & Goldgof, D. B. (2007). A fuzzy C means variant for clustering evolving data streams. IEEE-SMC.

  56. Fletcher-Heath, L. M., Hall, L. O., Goldgof, D. B., & Reed Murtagh, F. (2001). Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artificial Intelligence in Medicine, 21, 43–63.

    Article  Google Scholar 

  57. Clark, M. C., Hall, L. O., Goldgof, D. B., Velthuizen, R., Murtagh, R., & Silbiger, M. S. (1998). Automatic tumor segmentation using knowledge-based techniques. IEEE Transactions on Medical Imaging, 17(2), 187–201.

    Article  Google Scholar 

  58. Clark, M. C., Hall, L. O., Goldgof, D. B., Velthuizen, R., Murtagh, R., & Silbiger, M. S. (1998). Unsupervised brain tumor segmentation using knowledge-based fuzzy techniques. In H.-N. Teodorescu, A. Kandel, & L. C. Jain (Eds.), Fuzzy and neuro-fuzzy systems in medicine (pp. 137–169). Lille: CRC.

    Google Scholar 

  59. Clark, M., Goldgof, D., Hall, L. O., Clarke, L., Silbiger, M., & Li, C. (1994). MRI segmentation using fuzzy clustering techniques integrating knowledge. IEEE Engineering in Medicine & Biology, 13(5), 730–742.

    Article  Google Scholar 

  60. Pham, D. L., & Prince, J. L. (1999). Adaptive fuzzy segmentation of magnetic resonance images. IEEE Transactions on Medical Imaging, 18(9), 737–752.

    Article  Google Scholar 

  61. Bezdek, J. C., Hall, L. O., & Clarke, L. P. (1993). Review of MR image segmentation techniques using pattern recognition. Medical Physics, 20, 1033–1048.

    Article  Google Scholar 

  62. Pham, D. L., & Prince, J. L. (1999). An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities. Pattern Recognition Letters, 20(1), 57–68.

    Article  MATH  Google Scholar 

  63. Ahmed, M. N., & Yamany, S. M., et al. (2002). A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data IEEE Transactions on Medical Imaging, 21(3), 193–199.

    Article  Google Scholar 

  64. Bensaid, A. M., Bezdek, J. C., Hall, L. O., Velthuizen, R. P., & Clarke, L. P. (1992). Partially supervised fuzzy c-means algorithm for segmentation of MR images. Proc. SPIE, 1710, 522–528.

    Article  Google Scholar 

  65. Bouix, S., Martin-Fernandez, M., Ungar, L., Nakamura, M., Koo, M.-S., McCarley, R. W., et al. (2007). On evaluating brain tissue classifiers without a ground truth. NeuroImage, 36, 1207–1224.

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the National Institutes of Health under grant number 1 R01 EB00822-01 and by the Department of Energy through the ASCI PPPE Data Discovery Program, Contract number: DE-AC04-76DO00789.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence O. Hall.

Appendix

Appendix

Table 9 1.5 Tesla: Comparison of segmentations of SPFCM VS FSL.
Table 10 1.5 Tesla: Comparison of segmentations of SPM2 VS FSL.
Table 11 3 Tesla: Comparison of segmentations of SPFCM VS FSL.
Table 12 3 Tesla: Comparison of segmentations of SPM2 VS FSL.
Table 13 1.5 Tesla: Comparison of segmentations of OFCM VS FSL.
Table 14 3 Tesla: Comparison of segmentations of OFCM VS FSL.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hore, P., Hall, L.O., Goldgof, D.B. et al. A Scalable Framework For Segmenting Magnetic Resonance Images. J Sign Process Syst Sign Image Video Technol 54, 183–203 (2009). https://doi.org/10.1007/s11265-008-0243-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-008-0243-1

Keywords

Navigation