Skip to main content
Log in

Adhesion Properties of Nanometer-Thick Perfluoropolyether Films Confined Between Solid Surfaces: A Coarse-Grained Molecular Dynamics Study

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Lubrication with thin liquid films is essential to ensure the tribological reliability of technologically advanced devices, such as micro-electro-mechanical systems and hard disk drives. However, the adhesion and friction properties of thin films and the underlying mechanism remain elusive due to our limited understanding of film structures and motions at the molecular scale. Here, we investigate the adhesion behavior of nanometer-thick perfluoropolyether (PFPE) films confined between two solid surfaces as a function of film thickness using coarse-grained molecular dynamics simulations. Consistent with typical experimental results, our simulations show that the adhesive force exerted by the PFPE films reaches a maximum and then decreases with increasing solid–solid spacing. The maximum adhesive force increases sharply for PFPE films thinner than 4 nm. When exhibiting the maximum adhesive force, PFPE films are slightly stretched within a solid–solid spacing a little larger than the initial film thickness and thereby show lower density than the original equilibrium density. Conventional theories of adhesion, which assume equilibrium density for liquid films, are not applicable in such case. Therefore, we construct a theoretical model that takes decreasing liquid density into account to discuss the underlying mechanism of the adhesive force exerted by nanometer-thick PFPE films on solid surfaces. We infer from the theoretical analyses that the maximum adhesive force originates mainly from solid–liquid interaction for thin films and liquid–liquid interaction for thick films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hsu, S.M.: Nano-lubrication: concept and design. Tribol. Int. 37, 537–545 (2004)

    Article  Google Scholar 

  2. Kim, S.H., Asay, D.B., Dugger, M.T.: Nanotribology and MEMS. Nanotoday 2, 22–29 (2007)

    Article  Google Scholar 

  3. Rymuza, Z.: Control tribological and mechanical properties of MEMS surfaces. Part 1: critical review. Microsyst. Technol. 5, 173–180 (1999)

    Article  Google Scholar 

  4. Zhang, C.H.: Research on thin film lubrication: state of the art. Tribol. Int. 38, 443–448 (2005)

    Article  Google Scholar 

  5. Homola, A.M., Israelachvili, J.N., Gee, M.L., McGuiggan, P.M.: Measurements of and relation between the adhesion and friction of two surfaces separated by molecularly thin liquid films. J. Tribol. 111, 675–682 (1989)

    Article  CAS  Google Scholar 

  6. Lu, R., Zhang, H., Itakura, M., Fukuzawa, K., Itoh, S.: Adhesion properties of monolayer lubricant films coated on magnetic disk surfaces: contributions of mobile and bonded molecules. IEEE Trans. Magn. 48, 4269–4272 (2012)

    Article  CAS  Google Scholar 

  7. Waltman, R.J., Guo, X.C.: AFM force-distance curves for perfluoropolyether boundary lubricant films as a function of molecular polarity. Tribol. Lett. 45, 275–289 (2012)

    Article  CAS  Google Scholar 

  8. Mayeed, M.S., Kato, T.: Conformation of perfluoropolyethers in ultrathin liquid films on solid flat surfaces—effect of polar interaction. IEEE Trans. Magn. 39, 870–874 (2003)

    Article  CAS  Google Scholar 

  9. Guo, Q., Chung, P.S., Jhon, M.S.: Nano-mechanics of perfluoropolyether films: compression versus tension. IEEE Trans. Magn. 44, 3698–3701 (2003)

    Google Scholar 

  10. Jhon, M.S., Chung, P.S., Smith, R.L., Biegler, L.T.: A description of multiscale modeling for the head-disk interface focusing on bottom-level lubricant and carbon overcoat models. Adv Tribol (2013). doi:10.1155/2013/794151

    Google Scholar 

  11. Fukuda, M., Ishiguro, T., Zhang, H., Fukuzawa, K., Itoh, S.: Structure-based coarse-graining for inhomogeneous liquid polymer systems. J. Chem. Phys. submitted

  12. Fukuda, M., Ishiguro, T., Zhang, H., Fukuzawa, K., Itoh, S.: Simulation of adhesion properties of nanometer-thick perfluoropolyether films using coarse-grained molecular dynamics. Extended Abstracts of 2012 ASME-ISPS/JSME-IIP Joint International Conference on Micromechatronics for Information and Precision Equipment (MIPE2012), 401–403 (S24-3) (2012)

  13. Israelachvili, J.N.: Intermolecular and Surface Force, 3rd edn. Academic Press, Waltham (2011)

  14. Gao, C.: Theory of menisci and its applications. Appl. Phys. Lett. 71, 1801–1803 (1997)

    Article  CAS  Google Scholar 

  15. Gao, C., Dai, P., Homola, A., Weiss, J.: Meniscus forces and profiles: theory and its applications to liquid-mediated interfaces. ASME J. Tribol. 120, 358–368 (1998)

    Article  CAS  Google Scholar 

  16. Bhushan, B.: Adhesion and stiction: mechanisms, measurement techniques, and methods for reduction. J. Vac. Sci. Technol., B 21, 2262–2296 (2003)

    Article  CAS  Google Scholar 

  17. Horn, R.G., Hirz, S.J., Hadziioannou, G., Frank, C.W., Catala, J.M.: A reevaluation of forces measured across thin polymer films: nonequilibrium and pinning effects. J. Chem. Phys. 90, 6767–6774 (1989)

    Article  CAS  Google Scholar 

  18. Baljon, A.R.C., Robbins, M.O.: Energy dissipation during rupture of adhesive bonds. Science 271, 482–484 (1996)

    Article  CAS  Google Scholar 

  19. Baljon, A.R.C., Robbins, M.O.: A molecular view of bond rupture. Comput. Theor. Polym. S. 9, 35–40 (1999)

    Article  CAS  Google Scholar 

  20. Ferrari, A.C.: Diamond-like carbon for magnetic storage disks. Surf. Coat. Tech. 180–181, 190–206 (2004)

    Article  Google Scholar 

  21. http://www.solvayplastics.com/sites/solvayplastics/EN/Solvay%20Plastics%20Literature/BR_Fomblin_Lubes.pdf

  22. Mate, C.M., Novotny, V.J.: Molecular conformation and disjoining pressure of polymeric liquid films. J. Chem. Phys. 94, 8420–8427 (1991)

    Article  CAS  Google Scholar 

  23. Ma, X., Gui, J., Smoliar, L., Grannen, K., Marchon, B., Jhon, M.S., Bauer, C.L.: Spreading of perfluoropolyalkylether films on amorphous carbon surfaces. J. Chem. Phys. 110, 3129–3137 (1999)

    Article  CAS  Google Scholar 

  24. McGuiggan, P.M., Gee, M.L., Yoshizawa, H., Hirz, S.J., Israelachvili, J.N.: Friction studies of polymer lubricated surfaces. Macromolecules 40, 2126–2133 (2007)

    Article  CAS  Google Scholar 

  25. Padding, J.T., Briels, W.J.: Uncrossability constrains in mesoscopic polymer melt simulations: non-rouse behavior of C120H242. J. Chem. Phy. 115, 2846–2859 (2001)

    Article  CAS  Google Scholar 

  26. Fukunaga, H., Takimoto, J., Doi, M.: A coarse-graining procedure for flexible polymer chains with bonded and nonbonded interactions. J. Chem. Phys. 116, 8183–8190 (2002)

    Article  CAS  Google Scholar 

  27. Reith, D., Pütz, M., Müller-Plathe, F.: Deriving effective mesoscale potentials from atomistic simulations. J. Comput. Chem. 24, 1624–1636 (2003)

    Article  CAS  Google Scholar 

  28. Grest, G.S., Kremer, K.: Molecular dynamics simulation for polymers in the presence of a heat bath. Phys. Rev. A 33, 3628–3631 (1986)

    Article  CAS  Google Scholar 

  29. Ogata, S., Zhang, H., Fukuzawa, K., Mitsuya, Y.: Quantification of the surface morphology of lubricant films with polar end groups using molecular dynamics simulation: periodic changes in morphology depending on film thickness. J. Tribol. 130, 022301 (2008)

    Article  Google Scholar 

  30. Matsuoka, H., Ohkubo, S., Fukui, S.: Corrected expression of the van der Waals pressure for multilayered system with application to analyses of static characteristics of flying head sliders with an ultrasmall spacing. Microsyst. Technol. 11, 824–829 (2005)

    Article  CAS  Google Scholar 

  31. Wu, M., Navarrini, W., Spataro, G., Venturini, F., Sansotera, M.: An environmentally friendly class of fluoropolyether: α, ω-dialkoxyfluoropolyethers. Appl. Sci. 2, 351–367 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Funding Program for Next Generation World-Leading Researchers from the Japan Society for the Promotion of Science (JSPS), the Industrial Technology Research Grant Program in 2006 from the New Energy and Industrial Technology Development Organization (NEDO), and a grant-in-aid from the Storage Research Consortium (SRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hedong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuda, M., Zhang, H., Ishiguro, T. et al. Adhesion Properties of Nanometer-Thick Perfluoropolyether Films Confined Between Solid Surfaces: A Coarse-Grained Molecular Dynamics Study. Tribol Lett 51, 479–487 (2013). https://doi.org/10.1007/s11249-013-0183-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0183-1

Keywords

Navigation