Skip to main content
Log in

Lubricant-Induced Spacing Increases at Slider–Disk Interfaces in Disk Drives

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In this article, we explore the physical mechanisms for lubricant migration on recording head slider surfaces and how this migration leads to increased slider–disk spacing during disk drive operations. This is done using both a new experimental methodology, called the “droplet stress test,” and through simulation. In our simulations, we compare the air shear-induced lubricant migration modeled either as viscous flow of a continuum liquid film with zero slip or as wind driven slippage of molecules across the surface. The experimental data are best fitted using the viscous flow model to determine an effective viscosity for the sub-nanometer thick lubricant films. This effective viscosity tends to be somewhat less than the lubricant bulk viscosity due to air shear promoting the slippage of lubricant molecules across the surface. Our experimental results also indicate that the potential spacing increase from the pickup of disk lubricant on the slider is limited by the mobile fraction of the dewetting thickness of the lubricant film on the slider.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mate, C.M.: Tribology on the Small Scale: A Bottom Up Approach to Friction, Lubrication, and Wear. Oxford University Press, Oxford (2008)

    Google Scholar 

  2. Johnson, K.E., Mate, C.M., Merz, J.A., White, R.L., Wu, A.W.: Thin-film media—current and future technology. IBM J. Res. Dev. 40, 511–536 (1996)

    Article  CAS  Google Scholar 

  3. Gui, J.: Tribology challenges for head-disk interface toward 1 Tb/in2. IEEE Trans. Magn. 39, 716–721 (2003)

    Article  CAS  ADS  Google Scholar 

  4. Wood, R.: The feasibility of magnetic recording at 1 Terabit per square inch. IEEE Trans. Magn. 36, 36–42 (2000)

    Article  ADS  Google Scholar 

  5. Mate, C.M., Dai, Q., Payne, R.N., Knigge, B.E., Baumgart, P.: Will the numbers add up for sub-7-nm magnetic spacings? Future metrology issues for disk drive lubricants, overcoats, and topographies. IEEE Trans. Magn. 41, 626–631 (2005)

    Article  ADS  Google Scholar 

  6. Mate, C.M.: Molecular tribology of disk drives. Tribol. Lett. 4, 119–123 (1998)

    Article  CAS  Google Scholar 

  7. Wu, L.: A model for liquid transfer between two approaching gas bearing surfaces through coupled evaporation-condensation and migration dynamics. J. Appl. Phys. 104, 014503 (2008)

    Article  ADS  CAS  Google Scholar 

  8. Kubotera, H., Bogy, D.B.: Numerical simulation of molecularly thin lubricant film flow due to the air bearing slider in hard disk drives. Microsyst. Technol. 13, 859–865 (2007)

    Article  CAS  Google Scholar 

  9. Wu, L.: A two-dimensional model for the interaction between lubricant droplet on the slider surface and air flow within the head/disk interface of disk drives. J. Appl. Phys. 99, 08N101-1–08N101-3 (2006)

    Google Scholar 

  10. Marchon, B., Guo, X.C., Moser, A., Spool, A., Kroeker, R., Crimi, F.: Lubricant dynamics on a slider: “the waterfall effect”. J. Appl. Phys. 105, 074313 (2009)

    Article  ADS  CAS  Google Scholar 

  11. Marchon, B., Karis, T., Dai, Q., Pit, R.: A model for lubricant flow from disk to slider. IEEE Trans. Magn. 39, 2447–2449 (2003)

    Article  CAS  ADS  Google Scholar 

  12. Liu, N., Bogy, D.B.: Air-bearing shear force in the head–disk interface of hard disk. Tribol. Lett. 35, 121–125 (2009)

    Article  Google Scholar 

  13. Mate, C.M., Payne, R.N., Dai, Q., Ono, K.: Nanoscale origins of dynamic friction in an asymmetric contact geometry. Phys. Rev. Lett. 97, 216104 (2006)

    Article  PubMed  ADS  CAS  Google Scholar 

  14. Wu, L.: Modeling and simulation of the interaction between lubricant droplets on the slider surface and air flow within the head/disk interface of disk drives. IEEE Trans. Magn. 42, 2480–2482 (2006)

    Article  ADS  Google Scholar 

  15. Kim, H.I., Mate, C.M., Hannibal, K.A., Perry, S.S.: How disjoining pressure drives the dewetting of a polymer film on a silicon surface. Phys. Rev. Lett. 82, 3496–3499 (1999)

    Article  CAS  ADS  Google Scholar 

  16. Fukuzawa, K., Shimuta, T., Yoshida, T., Mitsuya, Y., Zhang, H.: Direct visualization of dewetting of molecularly thin liquid films on solid surfaces. Langmuir 22, 6951–6955 (2006)

    Article  CAS  PubMed  Google Scholar 

  17. Waltman, R.J., Khurshudov, A., Tyndall, G.W.: Autophobic dewetting of perfluoropolyether films on amorphous-nitrogenated carbon surfaces. Tribol. Lett. 12, 163–169 (2002)

    Article  CAS  Google Scholar 

  18. Mate, C.M.: Wind-induced roughening of thin liquid films. Appl. Phys. Lett. 84, 532–534 (2004)

    Article  CAS  ADS  Google Scholar 

  19. Suk, M., Miyake, K., Kurita, M., Tanaka, H., Saegusa, S., Robertson, N.: Verification of thermally induced nanometer actuation of magnetic recording transducer to overcome mechanical and magnetic spacing challenges. IEEE Trans. Magn. 41, 4350–4352 (2005)

    Article  ADS  Google Scholar 

  20. Shiramatsu, T., et al.: Drive integration of active flying-height control slider with micro thermal actuator. IEEE Trans. Magn. 42, 2513–2515 (2006)

    Article  ADS  Google Scholar 

  21. Juang, J.Y., et al.: Numerical and experimental analyses of nanometer-scale flying height control of magnetic head with heating element. IEEE Trans. Magn. 44, 3679–3682 (2008)

    Article  ADS  Google Scholar 

  22. Mate, C.M., Marchon, B.: Shear response of molecularly thin liquid films to an applied air stress. Phys. Rev. Lett. 85, 3902–3905 (2000)

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Scarpulla, M.A., Mate, C.M., Carter, M.D.: Air shear driven flow of thin perfluoropolyether polymer films. J. Chem. Phys. 118, 3368–3375 (2003)

    Article  CAS  ADS  Google Scholar 

  24. Ma, X., et al.: Complex terraced spreading of perfluoropolyalkylether films on carbon surfaces. Phys. Rev. E 59, 722–727 (1999)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Peter Baumgart for his comments and advice throughout this study; Rick White, Grace Wang, and Robert Waltman for fabricating the transparent disks used for in situ visualization; Nghia Bach for help with the optical flying height tester; and Oscar Ruiz and Lee Dorius for calculating the maps of shear stress for the different slider designs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Mathew Mate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mate, C.M., Marchon, B., Murthy, A.N. et al. Lubricant-Induced Spacing Increases at Slider–Disk Interfaces in Disk Drives. Tribol Lett 37, 581–590 (2010). https://doi.org/10.1007/s11249-009-9555-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-009-9555-y

Keywords

Navigation