, Volume 22, Issue 5, pp 973-982,
Open Access This content is freely available online to anyone, anywhere at any time.
Date: 31 Mar 2013

A threshold level of oxalate oxidase transgene expression reduces Cryphonectria parasitica-induced necrosis in a transgenic American chestnut (Castanea dentata) leaf bioassay

Abstract

American chestnut (Castanea dentata) was transformed with a wheat oxalate oxidase (oxo) gene in an effort to degrade the oxalic acid (OA) secreted by the fungus Cryphonectria parasitica, thus decreasing its virulence. Expression of OxO was examined under two promoters: a strong constitutive promoter, CaMV 35S, and a predominantly vascular promoter, VspB. Oxo gene transcription was quantified by RT-qPCR. Relative expression of OxO varied approximately 200 fold among events produced with the 35S-OxO. The lowest 35S-OxO event expressed approximately 3,000 fold higher than the highest VspB-OxO event. This was potentially due to the tissue-specific nature of the VspB-controlled expression, the strength of the CaMV 35S constitutive promoter, or position effects. Leaf assays measuring necrotic lesion length were conducted to better understand the relationship between OxO expression level and the blight fungus in planta. A threshold response was observed between the OxO expression level and the C. parasitica lesion length. Five events of the 35S-OxO line showed significantly reduced lesion length compared to the blight-susceptible American chestnut. More importantly, the lesion length in these five events was reduced to the same level as the blight-resistant Chinese chestnut, C. mollissima. This is the first report on enhanced pathogen resistance in transgenic American chestnut.