Skip to main content
Log in

Synthesis Optimization and Catalytic Activity Screening of Industrially Relevant Ruthenium-Based Metathesis Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Olefin metathesis is a powerful catalytic reaction that has a huge potential in the pharmaceutical, polymer and specialty chemicals industries. Cost-effective industrial applications require large-scale availability of catalyst precursors which combine high activity, high selectivity and long life-time. Among the known numerous families of olefin metathesis catalysts, the Umicore M7-catalyst family represents a novel class of Hoveyda-type complexes showing excellent chemical stabilities and modular activity profiles. Relevant aspects related to their industrial synthesis as well as their catalytic performance in valuable olefin metathesis transformations are overviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Selected comprehensive reviews on olefin metathesis [13].

  2. For industrial perspectives, see [4, 5].

  3. For a recent review on olefin metathesis in total synthesis, see [6].

  4. For a special review dealing with the development of NHC-Ru based complexes, see [7].

  5. For modifications of the reactive carbene, see for example [814].

  6. For pre-catalysts efficient at low loading, see for example [1520].

  7. For pre-catalysts efficient at low loading, see for example [16, 18, 20].

  8. For enantioselective OM, see for instance [2125].

  9. Selected examples for Z-selective OM, see [2631].

  10. For modifications of the reactive carbene, see for example [814].

  11. For a recent review dealing with Ru-contamination, see [31].

  12. Reference [14].

  13. References 3235].

  14. For a reviews dealing with the valorization of renewable resources via OM, see [36, 37]; For valuable synthetic applications with M7 complexes, see [39 40].

  15. For valuable synthetic applications with M7 complexes, see [38, 40].

  16. References [42, 43]

  17. Reference [42].

  18. Reference [44].

  19. References [3234]; For valuable synthetic applications with M7 complexes, see [40].

  20. Reference [35].

  21. Reference [40].

  22. For valuable synthetic applications with M7 complexes, see [38, 40].

  23. Herbarumin I displayed significant phytotoxic effects, see [45]; For a pionner enantioselective total synthesis of Herbarumin I involving a RCM macrocyclisation step, see [46, 47].

  24. Reference [48].

  25. δ-decalactone is used in foods and beverages for its peach-like odour and cream flavour, see [4951].

  26. Exaltolide belongs to the musk-ketone family and is used as a base note in perfumery, see [52]; For previous synthesis of Exaltolide using a RCM macrocyclisation step, see [53, 54].

  27. For valuable synthetic applications with M7 complexes, see [55].

  28. For valuable synthetic applications with M7 complexes, see [38].

  29. For valuable synthetic applications with M7 complexes, see [40].

  30. Reference [34]; For valuable synthetic applications with M7 complexes, see [41].

  31. Reference [34].

  32. Reference [35]; For valuable synthetic applications with M7 complexes, see [39].

  33. For valuable synthetic applications with M7 complexes, see [39].

  34. For valuable synthetic applications with M7 complexes, see [40].

  35. See for instance : [55].

  36. Aplysamine 6 displayed good activity as an inhibitor of isoprenylcysteine carboxyl methyltransferase, see [5658].

  37. See footnote 34.

  38. Reference [34]

  39. For a recent review dealing with Ru-contamination, see [31].

  40. For a recent review dealing with Ru-contamination, see [31].

  41. Reference [34].

References

  1. Grubbs RH (ed) (2003) Handbook of Metathesis. Wiley-VCH, Weinheim

    Google Scholar 

  2. Vougioukalakis GC, Grubbs RH (2010) Chem Rev 110:1746

    Article  CAS  Google Scholar 

  3. Clavier H, Grela K, Kirschning A, Mauduit M, Nolan SP (2007) Angew Chem Int Ed 46:6786

    Article  CAS  Google Scholar 

  4. Briel O, Cazin CSJ (2010) In: Cazin CSJ (ed) N-heterocycle carbenes in transition metal catalysis and organocatalysis. Springer, London

    Google Scholar 

  5. Chikkali S, Mecking S (2012) Angew Chem Int Ed 51:5802

    Article  CAS  Google Scholar 

  6. Fürstner A (2011) Chem Commun 47:6505

    Article  Google Scholar 

  7. Samojlowicz C, Bieniek M, Grela K (2009) Chem Rev 109:3708

    Article  CAS  Google Scholar 

  8. Love JAJ, Morgan P, Trnka TM, Grubbs RH (2002) Angew Chem Int Ed 41:4035

    Article  CAS  Google Scholar 

  9. Wakamatsu H, Blechert S (2002) Angew Chem Int Ed 41:2403

    Article  CAS  Google Scholar 

  10. Grela K, Harutyunyan S, Michrowska A (2002) Angew Chem Int Ed 41:4038

    Article  CAS  Google Scholar 

  11. Zaja M, Connon SJ, Dunne AM, Rivard M, Buschmann N, Jiricek J, Blechert S (2003) Tetrahedron 59:6545

    Article  CAS  Google Scholar 

  12. Romero PE, Piers WE, McDonald R (2004) Angew Chem Int Ed 43:6161

    Article  CAS  Google Scholar 

  13. Zhan Z-YJ (2007) WO2007/003135

  14. Nelson DJ, Queval P, Rouen M, Magrez M, Toupet L, Caijo F, Borré E, Laurent I, Crévisy C, Baslé O, Mauduit M, Percy JM (2013) ACS Catalysis 3:259

    Article  CAS  Google Scholar 

  15. Gatti M, Vieille-Petit L, Luan X, Mariz R, Drinkel E, Linden A, Dorta R (2009) J Am Chem Soc 131:9498

    Article  CAS  Google Scholar 

  16. Vorfalt T, Leuthäußer S, Plenio H (2009) Angew Chem Int Ed 48:5191

    Article  CAS  Google Scholar 

  17. Kuhn KM, Champagne TM, Hong SH, Wei W-H, Nickel A, Lee CW, Virgil SC, Grubbs RH, Pederson RL (2010) Org Lett 12:984

    Article  CAS  Google Scholar 

  18. Sashuk V, Peeck LH, Plenio H (2010) Chem Eur J 16:3983

    Article  CAS  Google Scholar 

  19. Bantreil X, Randall RAM, Slawin AMZ, Nolan SP (2010) Organometallics 29:3007

    Article  CAS  Google Scholar 

  20. Songis O, Slawin AMZ, Cazin CSJ (2012) Chem Commun 48:1266

    Article  CAS  Google Scholar 

  21. Seiders TJ, Ward DW, Grubbs RH (2001) Org Lett 3:3225

    Article  CAS  Google Scholar 

  22. Funk TW, Berlin JM, Grubbs RH (2006) J Am Chem Soc 128:1840

    Article  CAS  Google Scholar 

  23. Van Veldhuizn JJ, Garber SB, Kingsbury JS, Hoveyda AH (2002) J Am Chem Soc 124:4954

    Article  Google Scholar 

  24. Grandbois SK (2008) Collins. Chem Eur J 14:9323

    Article  CAS  Google Scholar 

  25. Khan RKM, Zhugralin AR, Torker S, O’Brien RV, Lombardi PJ, Hoveyda AH (2012) J Am Chem Soc 134:12438

    Article  CAS  Google Scholar 

  26. Ibrahem I, Yu M, Schrock RR, Hoveyda AH (2009) J Am Chem Soc 131:3844

    Article  CAS  Google Scholar 

  27. Flook MM, Jiang AJ, Schrock RR, Müller P, Hoveyda AH (2009) J Am Chem Soc 131:7962

    Article  CAS  Google Scholar 

  28. Peryshkov DV, Schrock RR, Takase MK, Müller P, Hoveyda AH (2011) J Am Chem Soc 133:20754

    Article  CAS  Google Scholar 

  29. Endo K, Grubbs RH (2011) J Am Chem Soc 133:8525

    Article  CAS  Google Scholar 

  30. Keitz BK, Endo K, Patel PR, Herbert MB, Grubbs RH (2012) J Am Chem Soc 134:693

    Article  CAS  Google Scholar 

  31. Vougioukalakis GC (2012) Chem Eur J 18:8868

    Article  CAS  Google Scholar 

  32. Mauduit M, Laurent I, Clavier H (2008) Ruthenium carbene chelate complexes as thermally stable and active catalysts for alkene metathesis. PCT Int Appl WO2008/065187; Umicore M7 catalysts are subject to WO2008/065187A1 and available from Umicore AG & Co. KG. Terms and conditions upon request

  33. Rix D, Caijo F, Laurent I, Boeda F, Clavier H, Nolan SP, Mauduit M (2008) J Org Chem 73:4225

    Article  CAS  Google Scholar 

  34. Clavier H, Caijo F, Borré E, Rix D, Boeda F, Nolan SP, Mauduit M (2009) Eur J Org Chem 25:4254

    Article  Google Scholar 

  35. Borré E, Pieck C, Caijo F, Crévisy C, Mauduit M (2009) Chim Oggi 27:74

    Google Scholar 

  36. Mol JC (2004) Tops Catal 27:97

    Article  CAS  Google Scholar 

  37. Chikkali S, Mecking S (2012) Angew Chem Int Ed 51:5802

    Article  CAS  Google Scholar 

  38. Mohapatra DK, Somaiah R, Rao MM, Caijo F, Mauduit M, Yadav JS (2010) Synlett 1223

  39. Borré E, Dinh TH, Caijo F, Crévisy C, Mauduit M (2011) Synthesis 2125

  40. Caijo F, Tripoteau F, Bellec A, Crévisy C, Basle O, Mauduit M, Briel O (2013) Catal. Sci. Technol. 3:429

    CAS  Google Scholar 

  41. Boufroura H, Mauduit M, Drège E, Joseph D (2013) J Org Chem 78:2346

    Article  CAS  Google Scholar 

  42. Garber SB, Kingsbury JS, Gray BL, Hoveyda AH (2000) J Am Chem Soc 122:8168

    Article  CAS  Google Scholar 

  43. Gessler S, Randl S, Blechert S (2000) Tetrahedron Lett 41:9973

    Article  CAS  Google Scholar 

  44. Urbina-Blanco CA, Manzini S, Pérez Gomes J, Doppiu A, Nolan SP (2011) Chem Commun 47:5022. Umicore M20 and M23 catalysts are available from Umicore AG & Co. KG. Terms and conditions upon request

  45. Rivero-Cruz JF, Garcia-Aguirre G, Cerda-Garcia-Rojas CM, Mata R (2000) Tetrahedron 56:5337

    Article  Google Scholar 

  46. Fürstner A, Radkowski K (2001) Chem Commun 671

  47. Fürstner K, Radkowski C, Wirtz R, Goddard WC, Lehmann R Mynott (2002) J Am Chem Soc 124:7061

    Article  Google Scholar 

  48. Yuzikhin O, Metino G, Berestetskiy A (2007) J Agric Food Chem 55:7707

    Article  CAS  Google Scholar 

  49. Hattori T, Suzuki Y, Uesugi O, Oi S, Miyano S (2000) Chem Commun 73

  50. Hattori T, Suzuki Y, Ito Y, Hotta D, Miyano S (2002) Tetrahedron 58:5215

    Article  CAS  Google Scholar 

  51. Alchihab M, Destain J, Aguedo M, Thonart P (2010) Biotechnol Agron Soc Environ 14:681

    Google Scholar 

  52. Williams AS (1999) Synthesis 1707

  53. Fürstner A, Langemann K (1997) Synthesis 792

  54. Hagiwara H, Nakamura T, Okunaka N, Hoshi T, Suzuki T (2010) Helv Chim Acta 93:175

    Article  CAS  Google Scholar 

  55. Choi TL, Chattterjee AK, Grubbs RH (2001) Angew Chem Int Ed 40:1277

    Article  CAS  Google Scholar 

  56. Buchanan MS, Carroll AR, Fechner GA, Boyle A, Simpson M, Addepalli R, Avery VM, Hooper JNA, Cheung T, Chen H, Quinn RJ (2008) J Nat Prod 71:1066

    Article  CAS  Google Scholar 

  57. Ullah N, Arafeh KM (2009) Tetrahedron Lett 50:158

    Article  CAS  Google Scholar 

  58. Erb W, Payet E (2010) L’Actualité Chimique 345:33

    CAS  Google Scholar 

Download references

Acknowledgments

Funding for this project was partially provided by the Agence Nationale de la Recherche (Project CFLOW-OMANR-2012-CDII-0002, Grant to S.B.) and by Rennes-Métropole. M.M. and F.C. thank the Region Bretagne for its financial support (Fonds de Maturation Feder N° 09005612).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelino Doppiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doppiu, A., Caijo, F., Tripoteau, F. et al. Synthesis Optimization and Catalytic Activity Screening of Industrially Relevant Ruthenium-Based Metathesis Catalysts. Top Catal 57, 1351–1358 (2014). https://doi.org/10.1007/s11244-014-0302-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0302-8

Keywords

Navigation