Skip to main content
Log in

Calculated Pourbaix Diagrams of Cubic Perovskites for Water Splitting: Stability Against Corrosion

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

We use density functional theory calculations to investigate the stability of cubic perovskites for photo-electrochemical water splitting taking both materials in their bulk crystal structure and dissolved phases into account. The method is validated through a detailed comparison of the calculated and experimental Pourbaix diagrams for TiO2 and ZnO. For a class of 23 oxides, oxynitrides, and oxyfluorides, which were recently proposed as candidates for one-photon water splitting, our calculations predict most of the materials to be stable at potentials around the water red-ox level. The oxides become less stable at lower potentials, while the oxynitrides become unstable at higher potentials. We discuss the implications of these findings for the problem of photo-corrosion of water splitting electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Greeley J, Jaramillo TF, Bonde J, Chorkendorff I, Norskov JK (2006) Nat Mater 5(11):909. doi:10.1038/nmat1752

    Article  CAS  Google Scholar 

  2. Curtarolo S, Hart GLW, Nardelli MB, Mingo N, Sanvito S, Levy O (2013) Nat Mater 12(3):191. doi:10.1038/nmat3568

    Article  CAS  Google Scholar 

  3. Johannesson GH, Bligaard T, Ruban AV, Skriver HL, Jacobsen KW, Nørskov JK (2002) Phys Rev Lett 88(25):255506. doi:10.1103/PhysRevLett.88.255506

    Article  CAS  Google Scholar 

  4. Franceschetti A, Zunger A (1999) Nature 402:60. doi:10.1038/46995

    Article  CAS  Google Scholar 

  5. Ceder G, Chiang YM, Sadoway DR, Aydinol MK, Jang YI, Huang B (1998) Nature 392:694. doi:10.1038/33647

    Article  CAS  Google Scholar 

  6. Setyawan W, Gaume RM, Lam S, Feigelson RS, Curtarolo S (2011) . ACS Comb Sci 13(4):382. doi:10.1021/co200012w

    Article  CAS  Google Scholar 

  7. Hachmann J, Olivares-Amaya R, Atahan-Evrenk S, Amador-Bedolla C, Sanchez-Carrera RS, Gold-Parker A, Vogt L, Brockway AM, Aspuru-Guzik A (2011) J Phys Chem Lett 2(17):2241. doi:10.1021/jz200866s

    Article  CAS  Google Scholar 

  8. Olivares-Amaya R, Amador-Bedolla C, Hachmann J, Atahan-Evrenk S, Sanchez-Carrera RS, Vogt L, Aspuru-Guzik A (2011) Energy Environ Sci 4:4849. doi:10.1039/C1EE02056K

  9. O’Boyle NM, Campbell CM, Hutchison GR (2011) J Phys Chem C 115(32):16200. doi:10.1021/jp202765c

    Article  Google Scholar 

  10. Armiento R, Kozinsky B, Fornari M, Ceder G (2011) Phys Rev B 84(1):014103. doi:10.1103/PhysRevB.84.014103

    Google Scholar 

  11. Castelli IE, Olsen T, Datta S, Landis DD, Dahl S, Thygesen KS, Jacobsen KW (2012) Energy Environ Sci 5:5814. doi:10.1039/C1EE02717D

  12. Castelli IE, Landis DD, Thygesen KS, Dahl S, Chorkendorff I, Jaramillo TF, Jacobsen KW (2012) Energy Environ Sci 5:9034.doi:10.1039/C2EE22341D

  13. Fujishima A, Honda K (1972) Nature 238(5358):37. doi:10.1038/238037a0

    Article  CAS  Google Scholar 

  14. Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K (2006) Nature 440(7082):295. doi:10.1038/440295a

    Article  CAS  Google Scholar 

  15. Yamasita D, Takata T, Hara M, Kondo J, Domen K (2004) Solid State Ion 172:591. doi:10.1016/j.ssi.2004.04.033

    Article  CAS  Google Scholar 

  16. Castelli IE, Thygesen KS, Jacobsen KW (2013) MRS online proceedings library 1523. doi:10.1557/opl.2013.450. http://journals.cambridge.org/article_S1946427413004508

  17. ICSDWeb http://www.fiz-karlsruhe.de/icsd_web.html

  18. Materials Project: A Materials Genome Approach http://materialsproject.org/

  19. Mortensen JJ, Hansen LB, Jacobsen KW (2005) Phys Rev B 71(3):35109. doi:10.1103/PhysRevB.71.035109

    Article  Google Scholar 

  20. Enkovaara J, Rostgaard C, Mortensen JJ, Chen J, Dulak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen HA, Kristoffersen HH, Kuisma M, Larsen AH, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses PG, Ojanen J, Olsen T, Petzold V, Romero NA, Stausholm-Møller J, Strange M, Tritsaris GA, Vanin M, Walter M, Hammer B, Hakkinen H, Madsen GKH, Nieminen RM, Nørskov JK, Puska M, Rantala TT, Schiotz J, Thygesen KS, Jacobsen KW (2010) J Phys Condens Matter 22(25):253202. doi:10.1088/0953-8984/22/25/253202

    Article  CAS  Google Scholar 

  21. Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59(1):7413. doi:10.1103/PhysRevB.59.7413

    Article  Google Scholar 

  22. Verink ED (2011) Simplified procedure for constructing Pourbaix diagrams. Wiley, Hoboken, p 93. doi:10.1002/9780470872864.ch7

  23. Johnson JW, Oelkers EH, Helgeson HC (1992) Comput Geosci 18(7):899. doi:10.1016/0098-3004(92)90029-Q

    Google Scholar 

  24. Pourbaix M (1966) Atlas of electrochemical equilibria in aqueous solutions. No. v. 1 in Atlas of Electrochemical Equilibria in Aqueous Solutions. Pergamon Press, New York

    Google Scholar 

  25. Persson KA, Waldwick B, Lazic P, Ceder G (2012) Phys Rev B 85:235438 doi:10.1103/PhysRevB.85.235438

    Google Scholar 

  26. Dionigi F, Vesborg PCK, Pedersen T, Hansen O, Dahl S, Xiong A, Maeda K, Domen K, Chorkendorff I (2011) Energy Environ Sci 4:2937. doi:10.1039/C1EE01242H

  27. Dionigi F, Vesborg PC, Pedersen T, Hansen O, Dahl S, Xiong A, Maeda K, Domen K, Chorkendorff I (2012) J Catal 292:26. doi: 10.1016/j.jcat.2012.03.021

  28. Connolly J (2005) Earth Planet Sci Lett 236(12):524. doi:10.1016/j.epsl.2005.04.033

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Jan Rossmeisl for useful discussions. The authors acknowledge support from the Catalysis for Sustainable Energy (CASE) initiative funded by the Danish Ministry of Science, Technology and Innovation, and from the Center on Nanostructuring for the Efficient Energy Conversion (CNEEC) at Stanford University, an Energy Frontier Research Center founded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE-SC0001060

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivano E. Castelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castelli, I.E., Thygesen, K.S. & Jacobsen, K.W. Calculated Pourbaix Diagrams of Cubic Perovskites for Water Splitting: Stability Against Corrosion. Top Catal 57, 265–272 (2014). https://doi.org/10.1007/s11244-013-0181-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0181-4

Keywords

Navigation