Skip to main content

Advertisement

Log in

Hydrogen Production Using Highly Active Titanium Oxide-based Photocatalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Applying the principle of water decomposition over photoelectrochemical cells to heterogeneous photocatalytic systems using powdered semiconductors is now a field of great interest, encouraging new fundamental investigations into chemical reactions which take place at the electrode surfaces in the electrochemical cells. In the present review, we have focused on systems, which can convert solar energy into chemical energy by using TiO2 photocatalysts. The photocatalytic decomposition of water under UV light irradiation has been achieved with systems using various nanoparticle photocatalysts such as TiO2. However, recently, visible light-responsive TiO2 thin films photocatalysts have been successfully prepared by a radio frequency magnetron sputtering (RF-MS) deposition method. These thin film photocatalysts were found to have enough potential for the separate evolution of H2 and O2 from water under solar light. The TiO2 thin films were prepared on metal substrates by RF-MS deposition and mounted on H-type containers filled with water. This unique system enabled the separate evolution of H2 and O2 from water under sunlight irradiation, opening new opportunities for the practical on-site production of pure and clean H2 from water using abundant and clean sunlight in a safe, environmentally harmonious way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1971) Bull Chem Soc Jpn 44:1148

    Article  CAS  Google Scholar 

  2. Fujishima A, Honda K (1972) Nature 238:37

    Article  CAS  Google Scholar 

  3. Rubin TR, Calvert JG, Rankin GT, MacNevin WM (1953) J Am Chem Soc 75:2850

    Article  CAS  Google Scholar 

  4. Markham MC, Laidler KJ (1953) J Phys Chem 57:363

    Article  CAS  Google Scholar 

  5. Morrison SR, Freund T (1967) J Chem Phys 47:1543

    Article  CAS  Google Scholar 

  6. Kraeutler B, Bard AJ (1978) J Am Chem Soc 100:4317

    Article  CAS  Google Scholar 

  7. Bard AJ (1979) J Photochem 10:59

    Article  CAS  Google Scholar 

  8. Bard AJ (1980) Science 207:139

    Article  CAS  Google Scholar 

  9. Bard AJ (1982) J Phys Chem 86:172

    Article  CAS  Google Scholar 

  10. Wagner FT, Ferrer S, Somorjai GA (1980) Surf Sci 101:462

    Article  CAS  Google Scholar 

  11. Wagner FT, Somorjai GA (1980) Nature 285:559

    Article  CAS  Google Scholar 

  12. Wagner FT, Somorjai GA (1980) J Am Chem Soc 102:5494

    Article  CAS  Google Scholar 

  13. Carr RG, Somorjai GA (1981) Nature 290:576

    Article  CAS  Google Scholar 

  14. Ferrer S, Somorjai GA (1981) J Phys Chem 85:1464

    Article  CAS  Google Scholar 

  15. Bulatov AV, Khidekel ML (1976) Izv Akad Nauk SSSR Ser Khim 1902

  16. Schrauzer GN, Guth TD (1977) J Am Chem Soc 99:3508

    Article  Google Scholar 

  17. Sato S, White JM (1980) Chem Phys Lett 72:83

    Article  CAS  Google Scholar 

  18. Tabata S, Nishida H, Masaki Y, Tabata K (1995) Catal Lett 34:245

    CAS  Google Scholar 

  19. Tributsch H (1979) Nature 281:555

    Article  CAS  Google Scholar 

  20. Kawai T, Sakata T (1979) Nature 282:283

    Article  CAS  Google Scholar 

  21. Kawai T, Sakata T (1979) J Chem Soc Chem Commun 1047

  22. Kawai T, Sakata T (1979) Chem Phys Lett 72:87

    Article  Google Scholar 

  23. Kawai T, Sakata T (1980) J Chem Soc Chem Commun 694

  24. Kawai T, Sakata T (1980) Nature 286:474

    Article  CAS  Google Scholar 

  25. Kawai T, Sakata T (1981) Chem Lett 81

  26. Sato S, White JM (1981) J Catal 69:128

    Article  CAS  Google Scholar 

  27. Yamaguti K, Sato S (1985) J Chem Soc Faraday Trans 1 81:1237

    Google Scholar 

  28. Sato S (1986) Denki Kagaku oyobi Kogyo Butsuri Kagaku 54:977

  29. Sayama K, Arakawa H (1992) Chem Lett 253

  30. Sayama K, Arakawa H (1992) J Chem Soc Chem Commun 150

  31. Sayama K, Arakawa H (1993) J Phys Chem 97:531

    Article  CAS  Google Scholar 

  32. Sayama K, Arakawa H (1994) J Photochem Photobiol A: Chem 77:243

    Article  CAS  Google Scholar 

  33. Sayama K, Arakawa H (1996) J Photochem Photobiol A: Chem 94:67

    Article  CAS  Google Scholar 

  34. Sayama K, Arakawa H (1997) J Chem Soc, Faraday Trans 93:1647

    Article  CAS  Google Scholar 

  35. Moon SC, Tabata S, Okada K, Fujiki M, Mametsuka H (1996) Symp Proc Mater Soc 454:85

    Google Scholar 

  36. Moon SC, Mametsuka H, Suzuki E, Nakahara Y, In: Proceedings of 3rd Japan-EU Joint Workshop on the Frontiers of Catalytic Science & Technology for Energy, Environment and Risks Prevention, (Tsukuba, Japan, 1997) 387

  37. Moon SC, Mametsuka H, Suzuki E, Anpo M (1998) Chem Lett 117

  38. Moon SC, Mametsuka H, Suzuki E, Nakahara Y (1998) Catal Today 45:79

    Article  CAS  Google Scholar 

  39. Chang CE, Wilcox WR (1971) Mater Res Bull 6:1297

    Article  CAS  Google Scholar 

  40. Sadaoka Y, Sakai Y (1982) Denki Kagaku oyobi Kogyo Butsuri Kagaku 50:438

    Google Scholar 

  41. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW (1995) Chem Rev 95:69

    Article  CAS  Google Scholar 

  42. Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobiol C: Photochem Rev 1:1

    Article  CAS  Google Scholar 

  43. Choi WY, Termin A, Hoffman MR (1994) J Phys Chem 84:13669

    Article  Google Scholar 

  44. Anpo M, Ichihashi Y, Takeuchi M, Yamashita H (1998) Res Chem Intermed 24:143

    Article  CAS  Google Scholar 

  45. Kajiwara T, Hashimoto K, Kawai T, Sakata T (1982) J Phys Chem 86:4516

    Article  CAS  Google Scholar 

  46. Hashimoto K, Kawai T, Sakata T (1983) Chem Lett 709

  47. Shimizu T, Iyoda T, Koide Y (1985) J Am Chem Soc 107:35

    Article  Google Scholar 

  48. Abe R, Hara K, Sayama K, Domen K, Arakawa H (2000) J Photochem Photobiol A Chemistry 137:63

    Article  CAS  Google Scholar 

  49. Anpo M (1997) Catal Surv Jpn 1:169

    Article  CAS  Google Scholar 

  50. Anpo M, Takeuchi M, Yamashita H, Hirao T, Itoh N, Iwamoto N (1999) Proc 4th Int Conf. ECOMATERIAL Gifu 333

  51. Anpo M, Takeuchi M, Kishiguchi S, Yamashita H (1999) Surf Sci Jpn 20:60

    CAS  Google Scholar 

  52. Yamashita H, Ichihashi Y, Takeuchi M, Kishiguchi S, Anpo M (1999) J Synchrotron Rad 6:451

    Article  CAS  Google Scholar 

  53. Anpo M (2000) Pure Appl Chem 72:1265

    Article  CAS  Google Scholar 

  54. Anpo M (2000) Pure Appl Chem 72:1787

    Article  CAS  Google Scholar 

  55. Anpo M (2000) Stud Surf Sci Catal 130:157

    Article  Google Scholar 

  56. Yamashita H, Harada M, Misaka J, Takeuchi M, Ikeue K, Anpo M (2002) J Photochem Photobiol A 148:257

    Article  CAS  Google Scholar 

  57. Anpo M, Takeuchi M (2003) J Catal 216:505

    Article  CAS  Google Scholar 

  58. Kato H, Kudo A (2002) J Phys Chem B 106:5029

    Article  CAS  Google Scholar 

  59. Niishiro R, Kato H, Kudo A (2005) Phys Chem Chem Phys 7:2241

    Article  CAS  Google Scholar 

  60. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269

    Article  CAS  Google Scholar 

  61. Morikawa T, Asahi R, Ohwaki T, Aoki K, Taga Y (2001) Jpn J Appl Phys 40:L561

    Article  CAS  Google Scholar 

  62. Irie H, Washizuka S, Yoshino N, Hashimoto K (2003) Chem Commun 1298

  63. Ihara T, Miyoshi M, Iriyama Y, Matsumoto O, Sugihara S (2003) Appl Catal B-Environ 42:403

    Article  CAS  Google Scholar 

  64. Irie H, Watanabe Y, Hashimoto K (2003) J Phys Chem B 107:5483

    Article  CAS  Google Scholar 

  65. Sakthivel S, Kisch H (2003) Chem Phys Chem 4:487

    CAS  Google Scholar 

  66. Diwald O, Thompson TL, Goralski EG, Walck SD, Yates JT (2004) J Phys Chem B 108:52

    Article  CAS  Google Scholar 

  67. Umebayashi T, Ymaki T, Itoh H, Asai K (2002) Appl Phys Lett 81:454

    Article  CAS  Google Scholar 

  68. Umebayashi T, Ymaki T, Tanaka S, Asai K (2003) Chem Lett 32:330

    Article  CAS  Google Scholar 

  69. Umebayashi T, Ymaki T, Yamamoto S, Miyashita A, Tanaka S, Asai K (2003) J Appl Phys 93:5156

    Article  CAS  Google Scholar 

  70. Khan SUM, Al-Shahry M, Ingler WB Jr. (2002) Science 297:2243

    Article  CAS  Google Scholar 

  71. Irie H, Watanabe Y, Hashimoto K (2003) Chem Lett 32:722

    Article  Google Scholar 

  72. Sakthivel S, Kisch H (2003) Angrew Chem, Int Ed 42:4908

    Article  CAS  Google Scholar 

  73. Linkous CA, McKaige GT, Slattery DK, Ouellette AJA, Austin BCN (1995) Solar photocatalytic hydrogen production from water using a dual bed photosystem. Florida Solar Energy Center, Cocoa

    Google Scholar 

  74. Linkous CA, Muradov NZ, Ramser SN (1995) Int J Hydrogen Energ 20:701

    Article  CAS  Google Scholar 

  75. Linkous CA (1996) Proc US DOE Hydrogen Prog Rev 1:389

    CAS  Google Scholar 

  76. Linkous CA, Slattery DK, Ouellette AJA, McKaige GT, Austin BCN (1996) In: Proceedings of 11th World Hydrogen Energy Conference, vol. 3. Stuttgart, Germany, 2545

  77. Linkous CA (1997) Proc US DOE Hydrogen Prog Rev 2:129

    Google Scholar 

  78. Fujihara K, Ohno T, Matsumura M (1998) In: Abstracts of 1st NIMC International Symposium on Photoreaction Control and Photofunctional Materials. Tsukuba, Japan, 151

  79. Fujihara K, Ohno T, Matsumura M (1998) J Chem Soc, Faraday Trans 94:3705

    Article  CAS  Google Scholar 

  80. Abe R, Sayama K, Domen K, Arakawa H (2001) Chem Phys Lett 344:339

    Article  CAS  Google Scholar 

  81. Moon SC, Matsumura Y, Kitano M, Matsuoka M, Anpo M (2003) Res Chem Intermed 29:233

    Article  CAS  Google Scholar 

  82. Anpo M (2004) Bull Chem Soc Jpn 77:1427

    Article  CAS  Google Scholar 

  83. Anpo M, Dohshi S, Kitano M, Hu Y, Takeuchi M, Matsuoka M (2005) Annu Rev Mater Res 35:1

    Article  CAS  Google Scholar 

  84. Matsuoka M, Kitano M, Takeuchi M, Anpo M, Thomas JM (2005) Mater Sci Forum 486–487:81

    Google Scholar 

  85. Takeuchi M, Anpo M, Hirao T, Itoh N, Iwamoto N (2001) Surf Sci Jpn 22:561

    Article  CAS  Google Scholar 

  86. Kitano M, Takeuchi M, Matsuoka M, Thomas JM, Anpo M (2005) Chem Lett 34:616

    Article  CAS  Google Scholar 

  87. Matsuoka M, Kitano M, Takeuchi M, Anpo M, Thomas JM (2005) Top Catal 35:305

    Article  CAS  Google Scholar 

  88. Kikuchi H, Kitano M, Takeuchi M, Matsuoka M, Anpo M, Kamat PV (2006) J Phys Chem B 110:5537

    Article  CAS  Google Scholar 

  89. Kitano M, Tsujimaru M, Anpo M (2006) Appl Catal A Gen 314:179

    Article  CAS  Google Scholar 

  90. Kitano M, Takeuchi M, Matsuoka M, Thomas JM, Anpo M (2007) Catal Today 120:133

    Article  CAS  Google Scholar 

  91. Matsuoka M, Kitano M, Takeuchi M, Tsujimaru M, Anpo M, Thomas JM (2007) Catal Today 122:51

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Anpo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitano, M., Tsujimaru, K. & Anpo, M. Hydrogen Production Using Highly Active Titanium Oxide-based Photocatalysts. Top Catal 49, 4–17 (2008). https://doi.org/10.1007/s11244-008-9059-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-008-9059-2

Keywords

Navigation