Skip to main content
Log in

Nickel(II) complexes of polyhydroxybenzaldehyde N4-thiosemicarbazones: synthesis, structural characterization and antimicrobial activities

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Nickel(II) complexes with 2,3-dihydroxybenzaldehyde N4-substituted thiosemicarbazone ligands (H3L1–H3L4) have been synthesized and characterized with the aim of evaluating the effect of N4 substitution in the thiosemicarbazone moiety on their coordination behavior and biological activities. Two series of nickel(II) complexes with the general formulae [Ni(H3L)(H2L)]ClO4 and [Ni2(HL)2] were characterized by analytical and spectral techniques. The molecular structure of one of the complexes, namely, [Ni(H3L4)(H2L4)]ClO4 was established by single crystal X-ray diffraction studies. The crystal structure of this complex revealed that two H3L4 ligands are coordinated to nickel(II) in different modes; one as a neutral tridentate ONS ligand and the other is as a monoanionic tridentate (ONS) ligand. The antimicrobial activities of the compounds were tested against 25 bacterial strains via the disc diffusion method, and their minimum inhibitory concentration (MIC) and minimum microbicidal concentration were evaluated using microdilution methods. With a few exceptions, most of the compounds exhibited low-to-moderate inhibitory activities against the tested bacterial strains. However, the complexes [Ni2(HL3)2] (7) and [Ni2(HL4)2] (8) indicated higher inhibitory activity against Salmonella enterica ATCC 9068 (MIC values 15.7 and <15.7 μg/ml, respectively), compared with gentamicin as the positive control (MIC 25 μg/ml). Complex (7) also inhibited Streptococcus pneumoniae more efficiently (MIC 31.2 μg/ml), compared with gentamicin (MIC > 50 μg/ml). The toxicities of the compounds were tested on brine shrimp (Artemia salina), where no meaningful toxicity level was noted for both the free ligands and the complexes. The cytotoxicities of the compounds on cell viability were determined on MCF7, PC3, A375, and H413 cancer cells in terms of IC50; complexes [Ni(H3L3)(H2L3)]ClO4 (3), [Ni2(HL3)2] (7) and [Ni2(HL4)2] (8) exhibited significant cytotoxicity on the tested cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hochreuther S, Puchta R, Eldik RV (2011) Inorg Chem 50:12747–12761

    Article  CAS  Google Scholar 

  2. Tarafder MTH, Asmadi A, Talib SMS, Ali AM, Crouse KA (2001) Transition Met Chem 26:170–174

    Article  CAS  Google Scholar 

  3. Baldini M, Belicchi-Ferrari M, Bisceglie F, Dall’Aglio PP, Pelosi G, Pinelli S, Tarasconi P (2004) Inorg Chem 43:7170–7179

    Article  CAS  Google Scholar 

  4. Banerjee D, Yogeeswari P, Bhat P, Thomas A, Srividya M, Sriram D (2011) Eur J Med Chem 46:106–121

    Article  CAS  Google Scholar 

  5. Campbell MJM, Morrison E, Rogers V (1987) Polyhedron 6:1703–1705

    Article  CAS  Google Scholar 

  6. Casas JS, Garcìa-Tasende MS, Sordo J (2000) J Coord Chem Rev 209:197–261

    Google Scholar 

  7. Ramachandran E, Raja DS, Mike JL, Wagner TR, Zeller M, Natarajan K (2012) RSC Adv 2:8515–8525

    Article  CAS  Google Scholar 

  8. Afrasiabi Z, Sinn E, Padhye S, Dutta S, Padhye S, Newton C, Anson CE, Powell AK (2003) J Inorg Biochem 95:306–314

    Article  CAS  Google Scholar 

  9. Liberta AE, West DX (1992) Biometals 5:121–126

    Article  CAS  Google Scholar 

  10. Scovill JP, Klayman DL, Franchino FC (1982) J Med Chem 25:12611264

    Article  Google Scholar 

  11. Dilovic I, Rubcic M, Vrdoljak V, Kraljevic SP, Kralj M, Piantanida I, Cindric M (2008) Bioorg Med Chem 16:5189–5198

    Article  CAS  Google Scholar 

  12. Kovala-Demertzi D, Domopoulou A, Demertzis MA, Papageorgiou A, West DX (1997) Polyhedron 16:3625–3633

    Article  CAS  Google Scholar 

  13. Marzano C, Pellei M, Tisato F, Santini C (2009) Anticancer Agents Med Chem 9:185–211

    Article  CAS  Google Scholar 

  14. Pelosi G (2010) Open Crystallogr J 3:16–28

    Article  CAS  Google Scholar 

  15. Bindu P, Kurup MRP, Satyakeerty TR (1998) Polyhedron 18:321–331

    Article  Google Scholar 

  16. Prabhakaran R, Kalaivani P, Huang R, Poornima P, Padma VV, Dallemer FKN (2013) J Biol Inorg Chem 18:233–247

    Article  CAS  Google Scholar 

  17. Basuli F, Peng SM, Bhattacharya S (2000) Inorg Chem 39:1120–1127

    Article  CAS  Google Scholar 

  18. Andrews RK, Blakeley RL, Zerner B (1988) In: Sigel H, Sigel A (eds) Metal ions in biological systems, vol 23. Marcel Dekker, New York

    Google Scholar 

  19. Skyrianou KC, Perdih F, Turel I, Kessissoglou DP, Psomas G (2010) J Inorg Biochem 104:740–749 (and references cited therein)

    Google Scholar 

  20. Swesi AT, Farina Y, Baba I (2007) Sains Malays 36:21–26

    CAS  Google Scholar 

  21. Tan KW, Seng HL, Lim FS, Cheah SC, Ng CH, Koo KS, Mustafa MR, Ng SW, Maah MJ (2012) Polyhedron 38:275–284

    Article  CAS  Google Scholar 

  22. Zhu X, Wang C, Lu Z, Dang Y (1997) Transition Met Chem 22:9–13

    Article  Google Scholar 

  23. Bruker (2009) APEX2 and SAINT. Bruker AXS, Madison

    Google Scholar 

  24. Sheldrick GM (2001) SHELXTL version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.

  25. Farrugia LJ (1997) J Appl Cryst 30:565–566

    Article  CAS  Google Scholar 

  26. Spek AL (2003) J Appl Cryst 36:7–13

    Article  CAS  Google Scholar 

  27. Westrip SP (2010) J Appl Cryst 43:920–925

    Google Scholar 

  28. Andrews JM (2005) J Antimicrob Chemother 56:60–76

    Article  CAS  Google Scholar 

  29. Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Am J Clin Pathol 45:493–496

    CAS  Google Scholar 

  30. Espinel-Ingroff B, Iqbal AN, Ellis D, Pfaller MA, Messer S, Rinaldi M, Fothergill A, Gibbs DL, Wang A (2007) J Clin Microbiol 45:1811–1820

    Article  CAS  Google Scholar 

  31. Sarker SD, Nahar L, Kumarasamy Y (2007) Methods 42:321–324

    Article  CAS  Google Scholar 

  32. Banfi E, Scialino G, Monti-Bragadin C (2003) Antimicrob J Chemoter 52:796–800

    Article  CAS  Google Scholar 

  33. Radic GP, Glodovic VV, Radojevic ID, Stefanovic OD, Comic LR, Rathovic ZR, Valkonen A, Rissanen K, Trifunovic SR (2012) Polyhedron 31:69–76

    Article  CAS  Google Scholar 

  34. Rahman AU, Choudhary MI, Thomsen WJ (2001) Bioassay techniques for drug development. Harwood Academic, The Netherlands

    Book  Google Scholar 

  35. Looi CY, Moharram B, Paydar M, Wong YL, Leong KH, Mohamad K, Arya A, Wong WF, Mustafa MR (2013) BMC Complement Altern Med 13:166

    Article  CAS  Google Scholar 

  36. Mosmann T (1983) J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  37. West DX, Nassar AA, El-Saied FA, Ayad MI (1998) Transition Met Chem 23:423–427

    Article  CAS  Google Scholar 

  38. Lobana TS, Kumari P, Hundal G, Butcher RJ (2010) Polyhedron 29:1130–1136

    Article  CAS  Google Scholar 

  39. Afrasiabi Z, Sinn E, Lin W, Ma Y, Campana C, Padhye S (2005) J Inorg Biochem 99:1526–1531

    Article  CAS  Google Scholar 

  40. Afrasiabi Z, Sinn E, Chen J, Ma Y, Rheingold AL, Zakharov LN, Rath N, Padhye S (2004) Inorg Chim Acta 357:271–278

    Article  CAS  Google Scholar 

  41. Bindu P, Kurup MRP, Satyakeerty RT (1999) Polyhedron 18:321–331

    Article  CAS  Google Scholar 

  42. Chandra S, Sharma AK (2009) Spectrochim Acta Part A 7:2851–2858

    Google Scholar 

  43. Affan MA, Salam MA, Ahmad FB, Ismail J, Shamsuddin MB, Ali HM (2011) Inorg Chim Acta 366:227–232

    Article  CAS  Google Scholar 

  44. Barber DE, Lu Z, Richardson T, Crabtree RH (1992) Inorg Chem 31:4709–4711

    Article  CAS  Google Scholar 

  45. Prabhakaran R, Sivasamy R, Angayarkanni J, Huang R, Kalaivani P, Karvembu R, Dallemer F, Natarajan K (2011) Inorg Chim Acta 374:647–653

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from PPP (PS 484/2010B) and UMRG (RG206/11AFR) from University of Malaya (UM). The authors also would like to thank the Department of Chemistry, University of Malaya for facilities to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Jamil Maah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shawish, H.B., Paydar, M., Looi, C.Y. et al. Nickel(II) complexes of polyhydroxybenzaldehyde N4-thiosemicarbazones: synthesis, structural characterization and antimicrobial activities. Transition Met Chem 39, 81–94 (2014). https://doi.org/10.1007/s11243-013-9777-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-013-9777-6

Keywords

Navigation