Skip to main content
Log in

Studies on a new dinuclear CoII–pterin complex exhibiting reactivity towards phenylalanine and bromobenzene

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

2-Pivaloylamino-6-acetonyl-isoxanthopterin (1, \({\hbox{H}_{2}\hbox{L}}\)) has been reacted with \({\hbox{CoCl}_{2}\cdot 6\hbox{H}_{2}\hbox{O}}\) under suitable conditions for synthesizing the new compound \({\hbox{Na}[\hbox{Co}_{2}^{\rm II}\hbox{(L)}\hbox{Cl}_{3}(\hbox{CH}_{3}\hbox{OH})_{3}}\)] (2). It has been characterized by elemental analysis, electrospray ionization mass spectrometry, magnetic susceptibility measurement, different spectroscopic techniques, and cyclic voltammetry. Molecular mechanics (MM2) method provided with its optimized geometry (having lowest steric energy), consistent with the above data; the optimized bond lengths and bond angles data tally with the literature X-ray structural data. Reactivity of (2) towards phenylalanine in the presence of \({\hbox{O}_{2}}\) in methanol has been followed both kinetically and stoichiometrically; a reasonable amount of tyrosine could be recovered from the reaction medium. The negative \({\Delta\hbox{S}^{\#}}\) value (−274.0 J mol−1 \({\hbox{deg}^{-1})}\) indicates an associative pathway for this process. (2) is also able to react with bromobenzene as indicated by time-dependent absorption spectra as well as product identification. Efficacy of the pterin ligand residue \({(\hbox{L}^{2-})}\) of (2) in rendering the latter reactive towards the above-mentioned organic compounds, has been discussed on the basis of experimental evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.J. Kappock and J.P. Caradonna, Chem. Rev., 96, 2659 (1996); T.A. Dix and S.J. Benkovic, Acc. Chem. Res., 21, 101 (1988); R.T. Carr and S.J. Benkovic, Biochemistry, 32, 14132 (1993); H. Erlandsen, F. Fusetti, A. Martinez, E. Hough, T. Flatmark and R.C. Stevens, Nat. Struct. Biol., 4, 995 (1997); F. Fusetti, H. Erlandsen, T. Flatmark and R.C. Stevens, J. Biol. Chem., 273, 16962 (1998); B. Kobe, I.G. Jennings, C.M. House, B.J. Mitchell, K.E. Goodwill, B.D. Santarsiero, R.C. Stevens, R.G. Cotton and B.E. Kemp, Nat. Struct. Biol., 6, 442 (1999); F. Ekstrom, G. Stier, J. Eaton and U.H. Sauer, Acta Cryst., D59, 1310 (2003)

  2. W.A. Francisco T. Gaochao P.F. Fitzpatrick J.P. Klinman (1998) J. Am. Chem. Soc. 120 4057 Occurrence Handle10.1021/ja973543q Occurrence Handle1:CAS:528:DyaK1cXis12gtLc%3D

    Article  CAS  Google Scholar 

  3. S. Kaufman D.B. Fisher O Hayaishi (Eds) (1974) Molecular Mechanism of Oxygen Activation Academic Press New York 285

    Google Scholar 

  4. J.H. Enemark and C.G. Young, Adv. Inorg. Chem., 40, 1 (1993); R. Hille, Chem. Rev., 96, 2757 (1996); M.K. Johnson, D.C. Rees and M.W.W. Adams, Chem. Rev., 96 2817 (1996); D. Collison, C.D. Garner and J.A. Joule, Chem. Soc. Rev., 25, 25 (1996); E.I. Stiefel, Science, 272, 1599 (1996); J.H. Enemark, J.J.A. Cooey, J.J. Wang and R.H. Holm, Chem. Rev., 104, 1175 (2004); S.J.N. Burgmayer, Prog. Inorg. Chem., 52, 491 (2004); J. McMaster, J.M. Tunney and C.D. Garner, Prog. Inorg. Chem., 52, 539 (2004); R.R. Mendel, J. Chem. Soc. Dalton Trans., 3404 (2005)

  5. S.J.N. Burgmayer (1998) Struct. Bond. 92 67 Occurrence Handle1:CAS:528:DyaK1cXntlCqtr4%3D Occurrence Handle10.1007/BFb0081078

    Article  CAS  Google Scholar 

  6. W. Kaim (1987) Rev. Chem. Intermed. 8 247 Occurrence Handle1:CAS:528:DyaL2sXmtlKmtrs%3D Occurrence Handle10.1007/BF03156156

    Article  CAS  Google Scholar 

  7. S.J.N. Burgmayer E.I. Stiefel (1988) Inorg. Chem. 27 4059 Occurrence Handle10.1021/ic00295a033 Occurrence Handle1:CAS:528:DyaL1cXmtVektrs%3D

    Article  CAS  Google Scholar 

  8. S.J.N. Burgmayer and E.I. Stiefel, J. Am. Chem. Soc., 108, 8310 (1986); S.J.N. Burgmayer, M.R. Arkin, L. Bostick, S. Dempster, K.M. Everett, H.L. Layton, K.E. Paul, C. Rogge and A.L. Rheingold, J. Am. Chem. Soc., 117, 5812 (1995) and references mentioned therein; S.J.N. Burgmayer, H.L. Kaufmann, G. Fortunato, P. Hug and B. Fischer, Inorg. Chem., 38, 2607 (1999)

    Google Scholar 

  9. J. Perkinson S. Brodie K. Yoon K. Mosny P.J. Carroll T.V. Morgan S.J.N. Burgmayer (1991) Inorg. Chem. 30 719 Occurrence Handle10.1021/ic00004a023 Occurrence Handle1:CAS:528:DyaK3MXhtlCrtLo%3D

    Article  CAS  Google Scholar 

  10. E.S. Davies, R.L. Beddoes, D. Collison, A. Dinsmore, A.J.A. Joule, C.R. Wilson and C.D. Garner, J. Chem. Soc. Dalton Trans. 3985 (1997)

  11. T. Kohzuma, H. Masuda and O. Yamauchi, J. Am. Chem. Soc., 111, 3431 (1989); A. Odani, H. Masuda, K. Inukai and O. Yamauchi, J. Am. Chem.. Soc., 114, 6294 (1992); M.S. Nasir, K.D. Karlin, Q. Chen and J. Zubieta, J. Am. Chem. Soc., 114, 2264 (1992)

  12. B. Fischer, H. Schmalle, E. Dubler, A. Schafer and M. Viscontini, Inorg. Chem., 34, 5726 (1995); B. Fischer, H.W. Schmalle, M.R. Baumgartner and M. Viscontini, Helv. Chim. Acta, 80, 103 (1997)

  13. A. Crispini D. Pucci A. Bellusci G. Barberio M.L. Deda A. Cataldi M. Ghedini (2005) Crystal Growth & Design 5 1597 Occurrence Handle10.1021/cg050075k Occurrence Handle1:CAS:528:DC%2BD2MXltFCgs7k%3D

    Article  CAS  Google Scholar 

  14. Md.A. Ali and P.S. Roy, Proc. Indian Acad. Sci. (Chem.Sci.), 113, 77 (2001); Md. A. Ali and P.S. Roy, Transition. Metal. Chem., 27, 366 (2002); S. Sen and P.S. Roy, Transition Met. Chem., 30, 797 (2005)

  15. M.N. Hughes (1984) The Inorganic Chemistry of biological processes EditionNumber2 John Wiley & Sons New York 212

    Google Scholar 

  16. D.F. Shriver P.W. Atkins (1999) Inorganic Chemistry EditionNumber3 Oxford University press Oxford 651–664

    Google Scholar 

  17. W. Pfleiderer (1992) J. Heterocyclic Chem. 29 583 Occurrence Handle1:CAS:528:DyaK38XksVyisb0%3D Occurrence Handle10.1002/jhet.5570290301

    Article  CAS  Google Scholar 

  18. A. Dinsmore, J.H. Birks, C.D. Garner and J.A. Joule, J. Chem. Soc. Perkin Trans. 1, 801 (1997); R.L. Beddoes, J.R. Russell, C.D. Garner and J.A. Joule, Acta Cryst., C49, 1649 (1993); J.R. Russell, C.D. Garner and J.A. Joule, J. Chem. Soc., Perkin Trans. 1, 1245 (1992)

  19. S. Matsuura, S. Nawa, H. KaKizawa and Y. Hirata, J. Am. Chem. Soc., 75, 4446 (1953); F.Korte and R. Wallace, in: W. Pfleiderer and E.C. Taylor (eds), Pteridine Chemistry, Oxford, Pergamon Press, 1964, p. 75; Y. Iwanami and T. Seki, Bull. Chem. Soc. Japan, 45, 2829 (1972); Y. Iwanami, Bull. Chem. Soc. Japan, 44, 1314 (1971); B. Schircks, J.H. Bieri and M. Viscontini, Helv. Chim. Acta, 68, 1639 (1985); J.R. Russell, C.D. Garner and J.A. Joule, Synlett, 711 (1992)

  20. W. Kemp, Organic Spectroscopy, 3rd ed., Palgrave, U.K., 1991, pp. 293–299, 303–325

  21. R.M. Silverstein F.X. Webster (1998) Spectrometric Identification of Organic Compounds EditionNumber6 John Wiley & Sons Singapore 7–9

    Google Scholar 

  22. J. Yan, Isotope Pattern Calculator, 2001, V4.0

  23. W.J. Geary (1971) Coord. Chem. Rev. 7 110 Occurrence Handle10.1016/S0010-8545(00)80009-0

    Article  Google Scholar 

  24. R. Cotton and J.C. Traeger, Inorg. Chim. Acta, 201, 153 (1992); P. Falaras, C.-A. Mitsopoulou, D. Argyropaulos, E. Lyris, N. Psaroudakis, E. Vrachnou and D. Katakis, Inorg. Chem., 34, 4536 (1995); P. Basu, V.N. Nemykin and R.S. Sengar, Inorg. Chem., 42, 7489 (2003); R. Dessapt, C.S. Jegat, A. Mallard, H. Lavanant, J. Marrot and F. Secheresse, Inorg. Chem., 42, 6425 (2003)

  25. E.A.V. Ebsworth, D.W.H. Rankin and S. Cradock, Structural Methods in Inorganic Chemistry, ELBS/Blackwell Scientific Publications, U.K., 1987, Chap. 9; J. Andraos, J. Chem. Edu., 76, 258 (1999)

  26. J.A. Craig E.W. Harlan B.S. Snyder M.A. Whitener R.H. Holm (1989) Inorg. Chem. 28 2082 Occurrence Handle10.1021/ic00310a015 Occurrence Handle1:CAS:528:DyaL1MXit1Cnsbc%3D

    Article  CAS  Google Scholar 

  27. V.N. Nemykin S.R. Davie S. Mondal N. Rubie M.L. Kirk A. Somogyi P. Basu (2002) J. Am. Chem. Soc. 124 756 Occurrence Handle10.1021/ja017178l Occurrence Handle1:CAS:528:DC%2BD38Xjt1Siuw%3D%3D

    Article  CAS  Google Scholar 

  28. Chem. Office 2004, Chem 3D Ultra, version 8.0, Cambridge Soft Corporation, 100 Cambridge Park Drive, Cambridge MA02140-9802, U.S.A.

  29. N.L. Allinger, J. Am. Chem. Soc., 99, 8127 (1977); M. Zimmer, Chem. Rev., 95, 2629 (1995); A.R. Leach, Molecular Modelling, Principles and Applications 2nd ed., Pearson Education Ltd., England, 2001, Chap. 4

  30. F.A. Cotton and R.C. Elder, Inorg. Chem., 4, 1145 (1965); Inorg. Chem.,5, 423 (1966)

  31. J.K. Stalick, P.W.R. Corfield and D.W. Meek, Inorg. Chem., 12, 1668 (1973); M.D. Vaira and P.L. Orioli, Inorg. Chem., 8, 2729 (1969)

  32. C.J. Carrano B.S. Chohan B.S. Hammes B.W. Kail V.N. Nemykin P. Basu (2003) Inorg. Chem. 42 5999 Occurrence Handle10.1021/ic0262785 Occurrence Handle1:CAS:528:DC%2BD3sXms12ktLs%3D

    Article  CAS  Google Scholar 

  33. K. Peariso R.L. McNaughton M.L. Kirk (2002) J. Am. Chem. Soc. 124 9006 Occurrence Handle10.1021/ja017217t Occurrence Handle1:CAS:528:DC%2BD38Xlt1eqsLs%3D

    Article  CAS  Google Scholar 

  34. J.P. McNamara, J.A. Joule, I.H. Hillier and C.D. Garner, Chem. Commun. 177 (2005), together with the supplementary information

  35. Z. Dori R. Eisenberg H.B. Gray (1967) Inorg. Chem. 6 483 Occurrence Handle10.1021/ic50049a010 Occurrence Handle1:CAS:528:DyaF2sXotValtw%3D%3D

    Article  CAS  Google Scholar 

  36. J.H.Bieri, W.P. Hummel and M. Viscontini, Helv. Chim. Acta, 59, 2374 (1976); R. Soyka, W. Pfleiderer and R. Prewo, Helv. Chim. Acta, 73, 808 (1990)

    Google Scholar 

  37. R. Mondelli L. Merlini (1966) Tetrahedron 22 3253 Occurrence Handle10.1016/S0040-4020(01)92511-6 Occurrence Handle1:CAS:528:DyaF2sXjslaitg%3D%3D

    Article  CAS  Google Scholar 

  38. M.C. Day and J. Selbin, Theoretical Inorganic Chemistry, New Delhi, Affiliated East-west Press, 1969, pp. 494; B.N. Figgis and J. Lewis, Prog. Inorg. Chem., 6, 185 (1964)

  39. A.F. Wells (1975) Structural Inorganic Chemistry EditionNumber4 Oxford University Press U.K. 954

    Google Scholar 

  40. B.A. Goodman J.B. Raynor (1970) Adv. Inorg. Chem. Radiochem. 13 287

    Google Scholar 

  41. R.S. Drago (1977) Physical Methods in Chemistry Saunders College Publishing Orlando 497

    Google Scholar 

  42. R. Mengel, W. Pfleiderer and W.R. Knappe, Tetrahedron Letters, , 2817 (1977)

  43. W. Pfleiderer (1984) NoChapterTitle A.R. Katritzky C.W. Rees (Eds) Comprehensive Heterocyclic Chemistry NumberInSeriesVol 3 Pergamon Press Oxford 263–327

    Google Scholar 

  44. R.M. Silverstein G.C. Bassler T.C. Morril (1981) Spectrometric Identification of Organic compounds EditionNumber4 Wiley New York

    Google Scholar 

  45. A. Sharma and S.G. Schulman, Introduction to Fluorescence Spectroscopy, John Wiley & Sons, Inc, New York, 1999, pp. 55–57; H.H.Willard, L.L. Merritt, J.A. Dean and F.A. Settle, Instrumental Methods of Analysis, 6th edn, CBS Publishers, Delhi, 1986, Chap. 4; K.K. Rohatgi-Mukherjee, Fundamentals of Photochemistry, New Age International Pvt. Ltd., Publishers, New Delhi, 1986, p. 140

  46. S.J.N. Burgmayer and E.I. Stiefel, J. Chem. Edu. 62, 943 (1985); J.L. Johnson, B.E. Hainline and K.V. Rajagopalan, J.Biol. Chem., 255, 1783 (1980); D. M. Pitterle, J.L. Johnson and K.V. Rajagopalan, J. Biol. Chem., 268, 13506 (1993)

  47. J.A. Halfen S. Mahapatra E.C. Wilkinson S. Kaderli V.G. Young SuffixJr. L. Que SuffixJr. A.D. Zuberbühler W.B. Tolman (1996) Science 271 1397 Occurrence Handle10.1126/science.271.5254.1397 Occurrence Handle1:CAS:528:DyaK28XhsFegtLc%3D

    Article  CAS  Google Scholar 

  48. R.G. Wilkins (1991) Kinetics and Mechanism of Reactions of Transition Metal Complexes EditionNumber2 VCH Weinheim 43–47

    Google Scholar 

  49. Supplementary materials include the e.s.i.m.s. data for the relevant fragments of (2) and (3) and the corresponding theoretical isotope patterns calculated using reference 22, CHEM3D representation of (1) and a comparison of the selected computed bond lengths (Å) with the literature X-ray structural data and the blank experiment corresponding to Figure 6(a)

  50. J. Jayaraman, Laboratory Manual in Biochemistry, New Delhi, Wiley Eastern Ltd., 1981, p. 62; D.T. Plummer, An Introduction to Practical Biochemistry, New Delhi, Tata McGraw-Hill Publishing Co. Ltd, 1979, pp. 139

  51. V.C. Gibson, C. Redshaw, G.L.P. Walker, J.A.K. Howard, V.J. Hoy, J.M. Cole, L.G. Kuzmina, D.S. de Silva, J. Chem. Soc., Dalton Trans., 161 (1999)

  52. D.D. Perrin W.L.F. Armarego (1988) Purification of Laboratory Chemicals EditionNumber3 Pergamon Press Oxford 105

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parag S. Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sen, S., Ghosh, B. & Roy, P.S. Studies on a new dinuclear CoII–pterin complex exhibiting reactivity towards phenylalanine and bromobenzene. Transition Met Chem 32, 737–745 (2007). https://doi.org/10.1007/s11243-007-0237-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-007-0237-z

Keywords

Navigation