Skip to main content
Log in

Effect of vinylene and 1,4-phenylene spacers on efficiency of the ground-state intramolecular charge-transfer in enlarged 4-dimethylamino-1-methylpyridinium cations

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

15N NMR chemical shifts of the exo- and endocyclic nitrogen atoms show how efficient is the ground-state intramolecular charge transfer between these sites in 4-dimethylamino-1-methylpyridinium cation (increased contribution of the quinoid resonance form results in a shielding and deshielding effect of their NMR signals, respectively). As it was anticipated, insertion of vinylene and/or 1,4-phenylene spacers to the cation considerably hinders the ground-state charge transfer. This hypothesis is further supported by an analysis of the C–NMe2 bond lengths (X-ray data show that spacers elongate this bond). The selected valence angles in the compounds studied are also linearly dependent on δ(15Nendo) and δ(15Nexo) values. Although the correlation coefficient for the δ(15Nendo) versus δ(15Nexo) dependence is equal to 0.983, decrease of the net charge on one nitrogen atom is not compensated entirely by its increase on another nitrogen atom. This shows that exocyclic nitrogen atom is not the only acceptor of the positive charge in the molecule. The natural population analysis shows that the positive charge is transferred not only to the exocyclic N but also to, e.g., 1- and N-methyl C as well as to C3 and C5 atoms in pyridine ring. Ground-state charge transfer through the p-phenylene moiety was found to be less effective than through the trans-vinylene bridge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1

Similar content being viewed by others

References

  1. Colapietro M, Dominicano A, Marciante C, Portalone G (1982) Z Naturforsch 37B:1309

    CAS  Google Scholar 

  2. Hiberty PC, Ohanessian G (1984) J Am Chem Soc 106:6963

    Article  CAS  Google Scholar 

  3. Hammett LP (1970) Physical organic chemistry. McGraw-Hill, London

    Google Scholar 

  4. Krygowski TM, Maurin J (1989) J Chem Soc Perkin Trans 2:695

    Google Scholar 

  5. Hrobárik P, Horváth B, Sigmundová I, Zahradnik P, Malkina OL (2007) Magn Reson Chem 45:942

    Article  CAS  Google Scholar 

  6. Marek R, Lyčka A, Kolehmainen E, Sievänen E, Toušek J (2007) Curr Org Chem 11:1154

    Article  CAS  Google Scholar 

  7. Kalatzis E, Kiriazis L (1989) J Chem Soc Perkin Trans 2:179

    Google Scholar 

  8. Čopar A, Stanovnik B, Tišler M (1996) J Heterocycl Chem 33:465

    Article  Google Scholar 

  9. Koenigs E, Ruppelt E (1934) Liebigs Ann Chem 509:142

    Article  CAS  Google Scholar 

  10. Hutchings MG (1984) Tetrahedron 40:2061

    Article  CAS  Google Scholar 

  11. Baumgarten HE (1953) J Am Chem Soc 75:1239

    Article  CAS  Google Scholar 

  12. McEven WE, Terss RH, Elliott IW (1952) J Am Chem Soc 74:3605

    Article  Google Scholar 

  13. Kost AN, Sheinkman AK, Kazarinova NF (1964) Zh Obshch Khim 34:2044

    CAS  Google Scholar 

  14. Gawinecki R, Bąk T, Rasała D, Styrcz S (1996) Polish J Chem 70:188

    CAS  Google Scholar 

  15. Sheinkman AK, Rudenko NZ, Kazarinova NF, Lysenko VB (1963) Zh Obshch Khim 33:1964

    CAS  Google Scholar 

  16. Gawinecki R, Trzebiatowska K (2000) Dyes Pigment 45:103

    Article  CAS  Google Scholar 

  17. Kolehmainen E, Ośmiałowski B, Krygowski TM, Kauppinen R, Nissinen M, Gawinecki R (2000) J Chem Soc Perkin Trans 2:1259

    Google Scholar 

  18. Otwinowski Z, Minor W (1997) In: Carter CW, Sweet RM (eds) Methods in Enzymology, Vol. 276. Academic Press: New York, pp 307

  19. Burla MC, Camalli M, Carrozzini B, Cascarano GL, Giacovazzo C, Polidori G, Spagna J (2003) J Appl Cryst 36:1103

    Article  CAS  Google Scholar 

  20. Sheldrick GM (1997) SHELXL-97. University of Göttingen, Germany

    Google Scholar 

  21. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr. JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03 Revision D.02, Gaussian, Inc., Wallingford

  23. Rodig OR (1974) In: Abramovitch RA (ed) Pyridine and its derivatives, supplement part one. Interscience Publication, New York, pp 309

  24. Pearson RG, Songstad J (1967) J Am Chem Soc 89:1827

    Article  CAS  Google Scholar 

  25. Le Noble WJ (1974) Highlights of organic chemistry. An advanced textbook. Marcel Dekker, New York, p 848

    Google Scholar 

  26. Coe BJ, Harris JA, Asselberghs I, Wostyn KW, Clays K, Persoons A, Brunschwigh BS, Coles SJ, Th Gelbrich, Light ME, Hursthouse MB, Nakatani K (2003) Adv Funct Mater 13:347

    Article  CAS  Google Scholar 

  27. Cao X, Tolbert RW, McHale JL, Edwards WD (1998) J Phys Chem A 102:2739

    Article  CAS  Google Scholar 

  28. Gawinecki R, Trzebiatowska K (2001) Polish J Chem 75:231

    CAS  Google Scholar 

  29. Sibi MP, Lichter RL (1977) J Org Chem 42:2999

    Article  CAS  Google Scholar 

  30. Dorie J, Mechin B, Martin G (1979) Org Magn Reson 12:229

    Article  CAS  Google Scholar 

  31. Mishra A, Behera RK, Fronczek FR, Vidyasagar M, Behera GB (1999) Indian J Chem 38B:982

    CAS  Google Scholar 

  32. Ren P, Qin J-G, Zhang D-Q, Hu H-M (2004) Chin J Struct Chem 23:735

    CAS  Google Scholar 

  33. OYa Borbulevych, Clark RD, Romero A, Tan L, MY Antipin, Nesterov VN, Carselino BH, Moore CE, Sanghadasa M, Timofeeva TV (2002) J Mol Struct 604:73

    Article  Google Scholar 

  34. Tishkov AT, Dilman AD, Faustov VI, Birukov AA, Lysenko KS, Belyakov PA, Ioffe SL, Strelenko YA, Myu A (2002) J Am Chem Soc 124:11358

    Article  CAS  Google Scholar 

  35. Graham EM, Miskowski VM, Perry JW, Coulter DR, Stiegman AE, Schaefer WP, Marsh RE (1989) J Am Chem Soc 111:8771

    Article  CAS  Google Scholar 

  36. Wouters J, Evrard G, Durant F, Kalgutkar A, Castagnoli N (1996) Acta Cryst C52:1033

    CAS  Google Scholar 

  37. Glavcheva Z, Umezawa H, Okada Sh, Nakanishi H (2004) Mater Lett 58:2466

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are very much indebted to the ACK CYFRONET AGH, Kraków (MNiSW/SGI3700/UTPBydg/042/2007) and CI TASK Gdańsk, for supply of computer time and providing programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryszard Gawinecki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 758 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gawinecki, R., Stanovnik, B., Valkonen, A. et al. Effect of vinylene and 1,4-phenylene spacers on efficiency of the ground-state intramolecular charge-transfer in enlarged 4-dimethylamino-1-methylpyridinium cations. Struct Chem 20, 655–662 (2009). https://doi.org/10.1007/s11224-009-9457-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-009-9457-5

Keywords

Navigation