Skip to main content
Log in

Optimizing Latin hypercube designs by particle swarm

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Latin hypercube designs (LHDs) are widely used in many applications. As the number of design points or factors becomes large, the total number of LHDs grows exponentially. The large number of feasible designs makes the search for optimal LHDs a difficult discrete optimization problem. To tackle this problem, we propose a new population-based algorithm named LaPSO that is adapted from the standard particle swarm optimization (PSO) and customized for LHD. Moreover, we accelerate LaPSO via a graphic processing unit (GPU). According to extensive comparisons, the proposed LaPSO is more stable than existing approaches and is capable of improving known results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Algorithm 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: IEEE Swarm Intelligence Symposium. SIS 2007, pp. 120–127. IEEE, Piscataway (2007)

    Chapter  Google Scholar 

  • Bates, S.J., Sienz, J., Toropov, V.V.: Formulation of the optimal Latin hypercube design of experiments using a permutation genetic algorithm. In: AIAA 2004-2011, pp. 1–7 (2004)

    Google Scholar 

  • Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. Wiley, Hoboken (2006)

    Google Scholar 

  • Fang, K.-T., Ma, C.-X., Winker, P.: Centered L2-discrepancy of random sampling and Latin hypercube design, and construction of uniform designs. Math. Comput. 71, 275–296 (2002)

    MathSciNet  MATH  Google Scholar 

  • Grosso, A., Jamali, A.R.M.J.U., Locatelli, M.: Finding maximin Latin hypercube designs by iterated local search heuristics. Eur. J. Oper. Res. 197(2), 541–547 (2009)

    Article  MATH  Google Scholar 

  • Hung, Y., Wang, W.: Accelerating parallel particle swarm optimization via GPU. Optim. Methods Softw. 27(1), 33–51 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Jin, R., Chen, W., Sudjianto, A.: An efficient algorithm for constructing optimal design of computer experiments. J. Stat. Plan. Inference 134(1), 268–287 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Joseph, V.R., Hung, Y.: Orthogonal-maximin Latin hypercube designs. Stat. Sin. 18, 171–186 (2008)

    MathSciNet  MATH  Google Scholar 

  • Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE, Piscataway (1995)

    Chapter  Google Scholar 

  • Kennedy, M., O’Hagan, A.: Predicting the output from a complex computer code when fast approximations are available. Biometrika 87, 1–13 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Liefvendahl, M., Stocki, R.: A study on algorithms for optimization of Latin hypercubes. J. Stat. Plan. Inference 136(9), 3231–3247 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Morris, M.D., Mitchell, T.J.: Exploratory designs for computational experiments. J. Stat. Plan. Inference 43(3), 381–402 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Santner, T.J., Williams, B.J., Notz, W.I.: The Design and Analysis of Computer Experiments. Springer, New York (2003)

    Book  MATH  Google Scholar 

  • Tang, B.: Orthogonal array-based Latin hypercubes. J. Am. Stat. Assoc. 88(424), 1392–1397 (1993)

    Article  MATH  Google Scholar 

  • Toala, D.J.J., Bressloff, N.W., Keanea, A.J., Holden, C.M.E.: The development of a hybridized particle swarm for kriging hyperparameter tuning. Eng. Optim. 43(6), 675–699 (2011)

    Article  Google Scholar 

  • van Dam, E.R., Husslage, B., den Hertog, D., Melissen, H.: Maximin Latin hypercube designs in two dimensions. Oper. Res. 55(1), 158–169 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • van Dam, E.R., Rennen, G., Husslage, B.: Bounds for maximin Latin hypercube designs. Oper. Res. 57(3), 595–608 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • van den Bergh, F.: An analysis of particle swarm optimizers. Ph.D. Thesis, University of Pretoria (2006)

  • van den Bergh, F., Engelbrecht, A.P.: A new locally convergent particle swarm optimiser. In: IEEE International Conference on Systems, Man and Cybernetics, p. 3 (2002)

    Google Scholar 

  • Viana, F.A.C., Venter, G., Balabanov, V.: An algorithm for fast optimal Latin hypercube design of experiments. Int. J. Numer. Methods Eng. 82(2), 135–156 (2010)

    MathSciNet  MATH  Google Scholar 

  • Ye, K.Q., Li, W., Sudjianto, A.: Algorithmic construction of optimal symmetric Latin hypercube designs. J. Stat. Plan. Inference 90(1), 145–159 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for their valuable and helpful comments and suggestions. The research of Hung is supported by National Science Foundation grants DMS 0905753 and CMMI 0927572. This work was supported in part by National Science Council under grant NSC 99-2118-M-006-006-MY2 (Chen) and NSC 100-2628-M-002-011-MY4 (Wang), the Taida Institute of Mathematical Sciences, Center for Advanced Study in Theoretical Sciences, the National Center for Theoretical Sciences (Taipei Office) and the Mathematics Division of the National Center for Theoretical Sciences (South) in Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weichung Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, RB., Hsieh, DN., Hung, Y. et al. Optimizing Latin hypercube designs by particle swarm. Stat Comput 23, 663–676 (2013). https://doi.org/10.1007/s11222-012-9363-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-012-9363-3

Keywords

Navigation