Skip to main content
Log in

Magnetic Field Data Correction in Space for Modelling the Lithospheric Magnetic Field

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The Earth’s magnetic field as it is measured by low-Earth orbit satellites such as Swarm and CHAMP results from the superposition of internal and external source fields overlapping in time and in space. The Earth’s lithospheric field is one of the weakest sources detectable from space and its accurate description requires treatments of rapidly-varying magnetic fields generated by current systems in the ionosphere and magnetosphere. In this paper, we review methods most commonly used in geomagnetism to identify and then to correct for the external perturbation fields at satellite altitudes. We document the pros and cons of Fourier Filtering, polynomial and Spherical Harmonics analyses, Singular Spectral Analysis (SSA) and Line-levelling techniques. The difficulties are illustrated with an application of the methods on a common set of real Swarm magnetic field measurements and with a discussion on the differences between lithospheric field models obtained with each treatment. We finally discuss some perspectives for improvements of external field correction techniques relying on statistical or more explicit assumptions about the geographical distribution as well as the shape and strengths of the external magnetic field structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • P. Alken, A. Maute, A.D. Richmond, The F-region gravity and pressure gradient current systems: a review. Space Sci. Rev., 1–19 (2016). doi:10.1007/s11214-016-0266-z

  • P. Alken, S. Maus, Spatio-temporal characterization of the equatorial electrojet from CHAMP, Ørsted, and SAC-C satellite magnetic measurements. J. Geophys. Res. 112, A09305 (2007). doi:10.1029/2007JA012524

    Article  ADS  Google Scholar 

  • L.R. Alldredge, G.D. Van Voorhis, T.M. Davis, A magnetic profile around the world. J. Geophys. Res. 68(12), 3679–3692 (1963)

    Article  ADS  Google Scholar 

  • D.E. Alsdorf, R.R. Frese, J. Arkani-Hamed, H.C. Noltimier, Separation of lithospheric, external, and core components of the South polar geomagnetic field at satellite altitudes. J. Geophys. Res. 99(B3), 4655–4668 (1994)

    Article  ADS  Google Scholar 

  • J. Arkani-Hamed, D.W. Strangway, Band-limited global scalar magnetic anomaly map of the Earth derived from Magsat data. J. Geophys. Res. 91(B8), 8193–8203 (1986)

    Article  ADS  Google Scholar 

  • G. Backus, Non-uniqueness of the external geomagnetic field determined by surface intensity measurements. J. Geophys. Res. 75, 6337–6341 (1970)

    Article  Google Scholar 

  • G. Backus, R. Parker, C. Constable, Foundations of Geomagnetism (Cambridge University Press, Cambridge, 1996)

    Google Scholar 

  • R. Baldwin, H. Frey, Magsat crustal anomalies for Africa: dawn and dusk data differences and a combined data set. Phys. Earth Planet. Inter. 67(3), 237–250 (1991)

    Article  ADS  Google Scholar 

  • W. Baumjohann, R.A. Treumann, Basic Space Plasma Physics (World Scientific, Singapore, 1997)

    MATH  Google Scholar 

  • J.C. Cain, Z. Wang, C. Kluth, D.R. Schmitz, Derivation of a geomagnetic model to \(N=63\). J. Geophys. Res. 97(3), 431–441 (1989)

    Google Scholar 

  • S. Chapman, V.C.A. Ferraro, A new theory of magnetic storms. Terr. Magn. Atmos. Electr. 36(2), 77–97 (1931)

    Article  MATH  Google Scholar 

  • A. Chulliat, P. Vigneron, E. Thébault, O. Sirol, G. Hulot, Swarm SCARF dedicated ionospheric field inversion chain. Earth Planets Space 65(11), 1271–1283 (2013)

    Article  ADS  Google Scholar 

  • A. Chulliat, P. Vigneron, G. Hulot, First results from the Swarm dedicated ionospheric field inversion chain. Earth Planets Space 68, 104 (2016)

    Article  ADS  Google Scholar 

  • F. Civet, E. Thébault, O. Verhoeven, B. Langlais, D. Saturnino, Electrical conductivity of the Earth’s mantle from the first Swarm magnetic field measurements. Geophys. Res. Lett. 42(9), 3338–3346 (2015)

    Article  ADS  Google Scholar 

  • Y. Cohen, J. Achache, Contribution of induced and remanent magnetisation to long-wavelength oceanic magnetic anomalies. J. Geophys. Res. 99, 2943–2954 (1994)

    Article  ADS  Google Scholar 

  • T.G. Cowling, The magnetic field of sunspots. Mon. Not. R. Astron. Soc. 94, 39–48 (1933)

    Article  ADS  MATH  Google Scholar 

  • C. Drost Aakjær, C.C. Finlay, N. Olsen, Determining polar ionospheric electrojet currents from Swarm satellite constellation magnetic data. Earth Planets Space 68, 140 (2016)

    Article  ADS  Google Scholar 

  • J.W. Dungey, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6(2), 47 (1961)

    Article  ADS  Google Scholar 

  • J. Dyment, Y. Choi, M. Hamoudi, V. Lesur, E. Thébault, Global equivalent magnetization of the oceanic lithosphere. Earth Planet. Sci. Lett. 430, 54–65 (2015)

    Article  ADS  Google Scholar 

  • C.C. Finlay, S. Maus, C.D. Beggan, M. Hamoudi, V. Lesur, F.J. Lowes, N. Olsen, E. Thébault, Evaluation of candidate geomagnetic field models for IGRF-11. Earth Planets Space 62(10), 787–804 (2010)

    Article  ADS  Google Scholar 

  • C.C. Finlay, N. Olsen, L. Tøffner-Clausen, DTU candidate field models for IGRF-12 and the CHAOS-5 geomagnetic field model. Earth Planets Space 67, 1 (2015)

    Article  Google Scholar 

  • C.C. Finlay, V. Lesur, E. Thébault, F. Vervelidou, A. Morshhauser, R. Shore, Challenges handling magnetospheric and ionospheric signals in internal geomagnetic field modelling. Space Sci. Rev. (2016). doi:10.1007/s11214-016-0285-9

    Google Scholar 

  • N. Golyandina, A. Zhigljavsky, Singular Spectrum Analysis for Time Series (Springer, Berlin, 2013)

    Book  MATH  Google Scholar 

  • N. Grammatika, J. Dyment, Anisotropy of the Magsat magnetic anomalies: real or fictitious? Int. Assoc. Geomagn. Aeron. Gen. Assembly, 4–15 (1997)

  • D. Gubbins, D. Ivers, S.M. Masterton, D.E. Winch, Analysis of lithospheric magnetization in vector spherical harmonics. Geophys. J. Int. 187, 99–117 (2011)

    Article  ADS  Google Scholar 

  • J. Guo, H. Liu, X. Feng, T.I. Pulkkinen, E.I. Tanskanen, C. Liu, D. Zhong, Y. Wang, MLT and seasonal dependence of auroral electrojets: IMAGE magnetometer network observations. J. Geophys. Res. 119(4), 3179–3188 (2014)

    Article  Google Scholar 

  • B. Hamilton, Rapid modelling of the large-scale magnetospheric field from Swarm satellite data. Earth Planets Space 65(11), 1295–1308 (2013)

    Article  ADS  Google Scholar 

  • K. Hemant, S. Maus, A comparison of global lithospheric field models derived from satellite magnetic data, in First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, ed. by C. Reigber, H. Lühr, P. Schwintzer (Springer, Berlin, 2003), pp. 261–268

    Chapter  Google Scholar 

  • K. Hemant, S. Maus, Geological modeling of the new CHAMP magnetic anomaly maps using a Geographical Information System (GIS) technique. J. Geophys. Res. B, Solid Earth Planets 110, B12103 (2005)

    Article  ADS  Google Scholar 

  • G. Hulot, N. Olsen, E. Thébault, K. Hemant, Crustal concealing of small-scale core-field secular variation. Geophys. J. Int. 177(2), 361–366 (2009)

    Article  ADS  Google Scholar 

  • G. Hulot, T.J. Sabaka, N. Olsen, A. Fournier, The present and future geomagnetic field, in Geomagnetism. Treatise on Geophysics, vol. 5 (2015), 00096-8

    Google Scholar 

  • K. Kauristie, A. Morschauser, N. Olsen, C.C. Finlay, R.L. McPherron, J.W. Gjerloev, H.J. Opgenoorth, On the usage of geomagnetic indices for data selection in internal field modelling. Space Sci. Rev. (2016), this issue. doi:10.1007/s11214-016-0301-0

    Google Scholar 

  • M.C. Kelley, The Earth’s Ionosphere: Plasma Physics & Electrodynamics, vol. 96 (Academic Press, San Diego, 2009)

    Google Scholar 

  • M.G. Kivelson, C.T. Russell, Introduction to Space Physics (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  • S. Kotsiaros, N. Olsen, End-to-end simulation study of a full magnetic gradiometry mission. Geophys. J. Int. 196(1), 100–110 (2014)

    Article  ADS  Google Scholar 

  • R.A. Langel, The use of low altitude satellite data-bases for modeling of core and crustal fields and the separation of external and internal fields. Surv. Geophys. 14(1), 31–87 (1993)

    Article  ADS  Google Scholar 

  • R.A. Langel, An investigation of a correlation/covariance method of signal extraction. J. Geophys. Res. 100(B10), 20137–20157 (1995)

    Article  ADS  Google Scholar 

  • R.A. Langel, R.H. Estes, Large-scale, near-field magnetic fields from external sources and the corresponding induced internal field. J. Geophys. Res. 90(3), 2487–2494 (1985)

    Article  ADS  Google Scholar 

  • R.A. Langel, W.J. Hinze, The Magnetic Field of the Earth’s Lithosphere: The Satellite Perspective (Cambridge University Press, New York, 1998). 429 pp.

    Book  Google Scholar 

  • R.A. Langel, T.J. Sabaka, R.T. Baldwin, J.A. Conrad, The near-Earth magnetic field from magnetospheric and quiet-day ionospheric sources and how it is modeled. Phys. Earth Planet. Inter. 98(3), 235–267 (1996)

    Article  ADS  Google Scholar 

  • K.M. Laundal, A.D. Richmond, Magnetic coordinate systems. Space Sci. Rev., 1–33 (2016)

  • V. Lesur, I. Wardinski, M. Rother, M. Mandea, GRIMM: the GFZ reference internal magnetic model based on vector satellite and observatory data. Geophys. J. Int. 173(2), 382–394 (2008)

    Article  ADS  Google Scholar 

  • V. Lesur, M. Rother, F. Vervelidou, M. Hamoudi, E. Thébault, Post-processing scheme for modelling the lithospheric magnetic field. Solid Earth 4, 105–118 (2013)

    Article  ADS  Google Scholar 

  • V. Lesur, M. Rother, I. Wardinski, R. Schachtschneider, M. Hamoudi, Chambodut a parent magnetic field models for the IGRF-12 GFZ-candidates. Earth Planets Space 67, 87 (2015)

    Article  ADS  Google Scholar 

  • T. Lijima, T.A. Potemra, The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad. J. Geophys. Res. 81(13), 2165–2174 (1976)

    Article  ADS  Google Scholar 

  • H. Lühr, M. Rother, S. Maus, W. Mai, D. Cooke, The diamagnetic effect of the equatorial Appleton anomaly: its characteristics and impact on geomagnetic field modeling. Geophys. Res. Lett. 30, 17 (2003)

    Article  Google Scholar 

  • S. Maus, The geomagnetic power spectrum. Geophys. J. Int. 174(1), 135–142 (2008)

    Article  ADS  Google Scholar 

  • S. Maus, H. Lühr, Signature of the quiet-time magnetospheric magnetic field and its electromagnetic induction in the rotating Earth. Geophys. J. Int. 162(3), 755–763 (2005)

    Article  ADS  Google Scholar 

  • S. Maus, H. Lühr, M. Purucker, Simulation of the high-degree crustal field recovery for the Swarm constellation of satellites. Earth Planets Space 58(4), 397–407 (2006a)

    Article  ADS  Google Scholar 

  • S. Maus, M. Rother, K. Hemant, C. Stolle, H. Lühr, A. Kuvshinov, N. Olsen, Earth’s lithospheric magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements. Geophys. J. Int. 164(2), 319–330 (2006b)

    Article  ADS  Google Scholar 

  • S. Maus, H. Lühr, M. Rother, K. Hemant, G. Balasis, P. Ritter, C. Stolle, Fifth-generation lithospheric magnetic field model from CHAMP satellite measurements. Geochem. Geophys. Geosyst. 8, Q05013 (2007a). doi:10.1029/2006GC001521

    ADS  Google Scholar 

  • S. Maus, T. Sazonova, K. Hemant, J.D. Fairhead, D. Ravat, National Geophysical Data Center candidate for the World Digital Magnetic Anomaly Map. Geochem. Geophys. Geosyst. 8, Q06017 (2007b). doi:10.1029/2007GC001643

    ADS  Google Scholar 

  • S. Maus, F. Yin, H. Lühr, C. Manoj, M. Rother, J. Rauberg, I. Michaelis, C. Stolle, R.D. Müller, Resolution of direction of oceanic magnetic lineations by the sixth-generation lithospheric magnetic field model from CHAMP satellite magnetic measurements. Geochem. Geophys. Geosyst. 9, Q07021 (2008)

    Article  ADS  Google Scholar 

  • R.L. McPherron, Physical processes producing magnetospheric substorms and magnetic storms. Geomagnetism 1, 593–739 (1991)

    Article  ADS  Google Scholar 

  • W. Menke, Geophysical Data Analysis: Discrete Inverse Theory (Academic Press, San Diego, 2012)

    MATH  Google Scholar 

  • M. Menvielle, T. Iyemori, A. Marchaudon, M. Nosé, Geomagnetic indices, in Geomagnetic Observations and Models (Springer, Dordrecht, 2011), pp. 183–228

    Chapter  Google Scholar 

  • I. Nakagawa, T. Yukutake, Spatial properties of the geomagnetic field over the area of the Japanese Islands deduced from Magsat data. J. Geomagn. Geoelectr. 36, 443–453 (1984)

    Article  Google Scholar 

  • N. Olsen, T.J. Sabaka, F. Lowes, New parameterization of external and induced fields in geomagnetic field modeling, and a candidate model for IGRF 2005. Earth Planets Space 57(12), 1141–1149 (2005)

    Article  ADS  Google Scholar 

  • N. Olsen, H. Lühr, T.J. Sabaka, M. Mandea, M. Rother, L. Tøffner-Clausen, S. Choi, CHAOS—a model of the Earth’s magnetic field derived from CHAMP, Ørsted, and SAC-C magnetic satellite data. Geophys. J. Int. 166(1), 67–75 (2006)

    Article  ADS  Google Scholar 

  • N. Olsen, K.H. Glassmeier, X. Jia, Separation of the magnetic field into external and internal parts. Space Sci. Rev. 152(1–4), 135–157 (2010)

    Article  ADS  Google Scholar 

  • N. Olsen, E. Friis-Christensen, R. Floberghagen, P. Alken, C.D. Beggan, A. Chulliat, E. Doornbos, J. Teixeira da Encarnação, B. Hamilton, G. Hulot, J. van den Ijssel, A. Kuvshinov, V. Lesur, H. Lühr, S. Macmillan, S. Maus, M. Noja, P.E.H. Olsen, J. Park, G. Plank, C. Püthe, J. Rauberg, P. Ritter, M. Rother, T.J. Sabaka, R. Schachtschneider, O. Sirol, C. Stolle, E. Thébault, A.W.P. Thomson, L. Tøffner-Clausen, J. Velimsky, P. Vigneron, P.N. Visser, The Swarm Satellite Constellation Application and Research Facility (SCARF) and swarm data products. Earth Planets Space 65(11), 1189–1200 (2013)

    Article  ADS  Google Scholar 

  • N. Olsen, G. Hulot, V. Lesur, C.C. Finlay, C. Beggan, A. Chulliat, S. Kotsiaros, The Swarm initial field model for the 2014 geomagnetic field. Geophys. Res. Lett. 42(4), 1092–1098 (2015)

    Article  ADS  Google Scholar 

  • M.E. Purucker, K. Whaler, in Crustal Magnetism, Treatise on Geophysics, vol. 5: Geomagnetism, chap. 6, ed. by M. Kono (Elsevier, Amsterdam, 2007), pp. 195–237

    Chapter  Google Scholar 

  • M.E. Purucker, T.J. Sabaka, R.A. Langel, N. Olsen, The missing dimension in Magsat and POGO anomaly studies. Geophys. Res. Lett. 24(22), 2909–2912 (1997)

    Article  ADS  Google Scholar 

  • C. Püthe, A. Kuvshinov, A. Khan, N. Olsen, A new model of Earth’s radial conductivity structure derived from over 10 yr of satellite and observatory magnetic data. Geophys. J. Int. 203(3), 1864–1872 (2015)

    Article  ADS  Google Scholar 

  • Y. Quesnel, M. Catalán, T. Ishihara, A new global marine magnetic anomaly data set. J. Geophys. Res. 114, B04106 (2009)

    Article  ADS  Google Scholar 

  • D. Ravat, R.A. Langel, M. Purucker, J. Arkani-Hamed, D.E. Alsdorf, Global vector and scalar Magsat magnetic anomaly maps. J. Geophys. Res. 100(B10), 111–120 136 (1995)

    Article  Google Scholar 

  • D. Ravat, K.A. Whaler, M. Pilkington, T. Sabaka, M. Purucker, Compatibility of high-altitude aeromagnetic and satellite-altitude magnetic anomalies over Canada. Geophysics 67(2), 546–554 (2002)

    Article  ADS  Google Scholar 

  • M. Rother, V. Lesur, R. Schachtschneider, An algorithm for deriving core magnetic field models from the Swarm data set. Earth Planets Space 65(11), 1223–1231 (2013)

    Article  ADS  Google Scholar 

  • C.T. Russell, R.L. McPherron, Semiannual variation of geomagnetic activity. J. Geophys. Res. 78, 92–108 (1973)

    Article  ADS  Google Scholar 

  • T.J. Sabaka, N. Olsen, Enhancing comprehensive inversions using the Swarm constellation. Earth Planets Space 58, 371–395 (2006)

    Article  ADS  Google Scholar 

  • T.J. Sabaka, L. Tøffner-Clausen, N. Olsen, Use of the comprehensive inversion method for Swarm satellite data analysis. Earth Planets Space 65(11), 1201–1222 (2013)

    Article  ADS  Google Scholar 

  • T.J. Sabaka, N. Olsen, R.H. Tyler, A. Kuvshinov, CM5 a pre-Swarm comprehensive geomagnetic field model derived from over 12 yr of CHAMP, Ørsted, SAC-C, and observatory data. Geophys. J. Int. 200, 1596–1626 (2015)

    Article  ADS  Google Scholar 

  • D. Saturnino, B. Langlais, F. Civet, E. Thébault, M. Mandea, Main field and secular variation candidate models for the 12th IGRF generation after 10 months of Swarm measurements. Earth Planets Space 67, 96 (2015)

    Article  ADS  Google Scholar 

  • U. Schmucker, Magnetic and Electric Fields Due to Electromagnetic Induction by External Sources. Landolt-Börnstein New-Ser., vol. 5/2b (Springer, Berlin, 1985), pp. 100–125

    Google Scholar 

  • A. Semenov, A. Kuvshinov, Global 3-D imaging of mantle conductivity based on inversion of observatory C-responses—II. Data analysis and results. Geophys. J. Int. 191(3), 965–992 (2012)

    ADS  Google Scholar 

  • B.P. Singh, A.K. Agarwal, R.R. Rastogi, On the nature of residual trend in MAGSAT passes after removal of core and external components. Ann. Geophys. 4B(6), 653–658 (1986)

    ADS  Google Scholar 

  • C. Stolle, H. Lühr, M. Rother, G. Balasis, Magnetic signatures of equatorial spread F as observed by the CHAMP satellite. J. Geophys. Res. 111, A02304 (2006). doi:10.1029/2005JA011184

    Article  ADS  Google Scholar 

  • M. Sugiura, T. Kamei, Equatorial Dst-Index 1957–1986, IAGA Bulletin No. 40 (1991)

  • M. Sugiura, D.J. Poros, A magnetospheric field model incorporating the OGO 3 and 5 magnetic field observations. Planet. Space Sci. 21(10), 1763–1773 (1973)

    Article  ADS  Google Scholar 

  • P.T. Taylor, J.J. Frawley, Magsat anomaly data over the Kursk region, USSR. Phys. Earth Planet. Inter. 45(3), 255–265 (1987)

    Article  ADS  Google Scholar 

  • E. Thébault, F. Vervelidou, A statistical spatial power spectrum of the Earth’s lithospheric magnetic field. Geophys. J. Int. 201, 605–620 (2015)

    Article  ADS  Google Scholar 

  • E. Thébault, M. Mandea, J.J. Schott, Modeling the lithospheric magnetic field over France by means of revised spherical cap harmonic analysis (R-SCHA). J. Geophys. Res. 111, B05102 (2006). doi:10.1029/2005JB004110

    ADS  Google Scholar 

  • E. Thébault, K. Hemant, G. Hulot, N. Olsen, On the geographical distribution of induced time-varying crustal magnetic fields. Geophys. Res. Lett. 36, L01307 (2009). doi:10.1029/2008GL036416

    Article  ADS  Google Scholar 

  • E. Thébault, M. Purucker, K. Whaler, B. Langlais, T.J. Sabaka, The magnetic field of the Earth’s lithosphere. Space Sci. Rev. 155(1–4), 95–127 (2010)

    Article  ADS  Google Scholar 

  • E. Thébault, F. Vervelidou, V. Lesur, M. Hamoudi, The satellite along-track analysis in planetary magnetism. Geophys. J. Int. 188(3), 891–907 (2012)

    Article  ADS  Google Scholar 

  • E. Thébault, P. Vigneron, S. Maus, A. Chulliat, O. Sirol, G. Hulot, Swarm SCARF dedicated lithospheric field inversion chain. Earth Planets Space 65(11), 1257–1270 (2013)

    Article  ADS  Google Scholar 

  • E. Thébault, C. Finlay, C. Beggan, P. Alken, J. Aubert, O. Barrois, F. Bertrand, T. Bondar, A. Boness, L. Brocco, E. Canet, A. Chambodut, A. Chulliat, P. Coïsson, F. Civet, A. Du, A. Fournier, I. Fratter, N. Gillet, B. Hamilton, M. Hamoudi, G. Hulot, T. Jager, M. Korte, W. Kuang, X. Lalanne, B. Langlais, J.-M. Léger, V. Lesur, F. Lowes, S. Macmillan, M. Mandea, C. Manoj, S. Maus, N. Olsen, V. Petrov, V. Ridley, M. Rother, T. Sabaka, D. Saturnino, R. Schachtschneider, O. Sirol, A. Tangborn, A. Thomson, L. Tøffner-Clausen, P. Vigneron, I. Wardinski, T. Zvereva, International geomagnetic reference field: the 12th generation. Earth Planets Space 67, 79 (2015)

    Article  ADS  Google Scholar 

  • E. Thébault, P. Vigneron, B. Langlais, G. Hulot, A Swarm lithospheric magnetic field model to SH degree 80. Earth Planets Space 68, 126 (2016)

    Article  ADS  Google Scholar 

  • A.W. Thomson, V. Lesur, An improved geomagnetic data selection algorithm for global geomagnetic field modelling. Geophys. J. Int. 169(3), 951–963 (2007)

    Article  ADS  Google Scholar 

  • R. Tyler, S. Maus, H. Lühr, Satellite observations of magnetic fields due to ocean tidal flow. Science 299, 239–241 (2003)

    Article  ADS  Google Scholar 

  • F. Vervelidou, E. Thébault, Global maps of the magnetic thickness and magnetization of the Earth’s lithosphere. Earth Planets Space 67, 173 (2015)

    Article  ADS  Google Scholar 

  • J. Vogt, M. Sinnhuber, M.B. Kallenrode, Effects of geomagnetic variations on system Earth, in Geomagnetic Field Variations, ed. by K.-H. Glassmeier, H. Soffel, J. Negendank. Advances in Geophysical and Environmental Mechanics and Mathematics (Springer, Berlin, 2008), pp. 25–63

    Google Scholar 

  • H. Wang, H. Lühr, S.Y. Ma, Solar zenith angle and merging electric field control of field-aligned currents: a statistical study of the southern hemisphere. J. Geophys. Res. 110(A3), A03306 (2005). doi:10.1029/2004JA010530

    Article  ADS  Google Scholar 

  • Y. Yamazaki, A. Maute, Space Sci. Rev. (2016). doi:10.1007/s11214-016-0282-z

    Google Scholar 

Download references

Acknowledgements

We thank the International Space Science Institute (ISSI) for hosting the workshop Earth’s Magnetic Field: “Understanding Sources from the Earth’s Interior and its Environment” in May 2015 and the conveners C. Stolle, A. Richmond, N. Olsen and H. Opgenoorth for inviting us to write this review. The authors acknowledge ESA for providing access to the Swarm L1b data. This work was partly funded by the Centre National des Etudes Spatiales (CNES) within the context of the project of the “Travaux préparatoires et exploitation de la mission Swarm” and by ESA. For IPGP this is contribution number 3797.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Thébault.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thébault, E., Lesur, V., Kauristie, K. et al. Magnetic Field Data Correction in Space for Modelling the Lithospheric Magnetic Field. Space Sci Rev 206, 191–223 (2017). https://doi.org/10.1007/s11214-016-0309-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-016-0309-5

Keywords

Navigation