Skip to main content
Log in

Menus for Feeding Black Holes

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Black holes are the ultimate prisons of the Universe, regions of spacetime where the enormous gravity prohibits matter or even light to escape to infinity. Yet, matter falling toward the black holes may shine spectacularly, generating the strongest source of radiation. These sources provide us with astrophysical laboratories of extreme physical conditions that cannot be realized on Earth. This chapter offers a review of the basic menus for feeding matter onto black holes and discusses their observational implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://www.ligo.caltech.edu/.

  2. http://www.ego-gw.it/.

References

  • U. Anzer, G. Boerner, J.J. Monaghan, Numerical studies of wind accretion. Astron. Astrophys. 176, 235–244 (1987)

    ADS  Google Scholar 

  • J.G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, J. van Meter, Gravitational-wave extraction from an inspiraling configuration of merging black holes. Phys. Rev. Lett. 96(11), 111102 (2006). doi:10.1103/PhysRevLett.96.111102

    ADS  Google Scholar 

  • L. Ballo, V. Braito, R. Della Ceca, L. Maraschi, F. Tavecchio, M. Dadina, Arp 299: a second merging system with two active nuclei? Astrophys. J. 600, 634–639 (2004). doi:10.1086/379887

    ADS  Google Scholar 

  • I. Bartos, Z. Haiman, B. Kocsis, S. Marka, G2 can illuminate the black hole population near the galactic center. ArXiv e-prints (2013)

  • H. Baumgardt, J. Makino, T. Ebisuzaki, Massive black holes in star clusters. II. Realistic cluster models. Astrophys. J. 613, 1143–1156 (2004). doi:10.1086/423299

    ADS  Google Scholar 

  • M.C. Begelman, Can a spherically accreting black hole radiate very near the Eddington limit. Mon. Not. R. Astron. Soc. 187, 237–251 (1979)

    ADS  Google Scholar 

  • M.C. Begelman, R.D. Blandford, M.J. Rees, Massive black hole binaries in active galactic nuclei. Nature 287, 307–309 (1980). doi:10.1038/287307a0

    ADS  Google Scholar 

  • K. Belczynski, T. Bulik, C.L. Fryer, A. Ruiter, F. Valsecchi, J.S. Vink, J.R. Hurley, On the maximum mass of stellar black holes. Astrophys. J. 714, 1217–1226 (2010). doi:10.1088/0004-637X/714/2/1217

    ADS  Google Scholar 

  • G. Bertone, A.R. Zentner, J. Silk, New signature of dark matter annihilations: gamma rays from intermediate-mass black holes. Phys. Rev. D 72(10), 103517 (2005). doi:10.1103/PhysRevD.72.103517

    ADS  Google Scholar 

  • G. Bertone, M. Fornasa, M. Taoso, A.R. Zentner, Dark matter annihilation around intermediate mass black holes: an update. New J. Phys. 11(10), 105016 (2009). doi:10.1088/1367-2630/11/10/105016

    ADS  Google Scholar 

  • S. Bianchi, M. Chiaberge, E. Piconcelli, M. Guainazzi, G. Matt, Chandra unveils a binary active galactic nucleus in Mrk 463. Mon. Not. R. Astron. Soc. 386, 105–110 (2008). doi:10.1111/j.1365-2966.2008.13078.x

    ADS  Google Scholar 

  • J. Binney, S. Tremaine, Galactic Dynamics, 2nd edn. (Princeton University Press, Princeton, 2008)

    MATH  Google Scholar 

  • L. Blecha, A. Loeb, Effects of gravitational-wave recoil on the dynamics and growth of supermassive black holes. Mon. Not. R. Astron. Soc. 390, 1311–1325 (2008). doi:10.1111/j.1365-2966.2008.13790.x

    ADS  Google Scholar 

  • J.M. Blondin, Hypercritical spherical accretion onto compact objects. Astrophys. J. 308, 755–764 (1986). doi:10.1086/164548

    ADS  Google Scholar 

  • J.M. Blondin, T.C. Pope, Revisiting the “flip-flop” instability of Hoyle-Lyttleton accretion. Astrophys. J. 700, 95–102 (2009). doi:10.1088/0004-637X/700/1/95

    ADS  Google Scholar 

  • H. Bondi, On spherically symmetrical accretion. Mon. Not. R. Astron. Soc. 112, 195 (1952)

    ADS  MathSciNet  Google Scholar 

  • H. Bondi, F. Hoyle, On the mechanism of accretion by stars. Mon. Not. R. Astron. Soc. 104, 273 (1944)

    ADS  Google Scholar 

  • V. Bromm, R.B. Larson, The first stars. Annu. Rev. Astron. Astrophys. 42, 79–118 (2004). doi:10.1146/annurev.astro.42.053102.134034

    ADS  Google Scholar 

  • V. Bromm, A. Loeb, Formation of the first supermassive black holes. Astrophys. J. 596, 34–46 (2003). doi:10.1086/377529

    ADS  Google Scholar 

  • A. Burrows, E. Livne, L. Dessart, C.D. Ott, J. Murphy, A new mechanism for core-collapse supernova explosions. Astrophys. J. 640, 878–890 (2006). doi:10.1086/500174

    ADS  Google Scholar 

  • D.N. Burrows, J.A. Kennea, G. Ghisellini, V. Mangano, B. Zhang, K.L. Page, M. Eracleous, P. Romano, T. Sakamoto, A.D. Falcone, J.P. Osborne, S. Campana, A.P. Beardmore, A.A. Breeveld, M.M. Chester, R. Corbet, S. Covino, J.R. Cummings, P. D’Avanzo, V. D’Elia, P. Esposito, P.A. Evans, D. Fugazza, J.M. Gelbord, K. Hiroi, S.T. Holland, K.Y. Huang, M. Im, G. Israel, Y. Jeon, Y.-B. Jeon, H.D. Jun, N. Kawai, J.H. Kim, H.A. Krimm, F.E. Marshall, P. Mészáros, H. Negoro, N. Omodei, W.-K. Park, J.S. Perkins, M. Sugizaki, H.-I. Sung, G. Tagliaferri, E. Troja, Y. Ueda, Y. Urata, R. Usui, L.A. Antonelli, S.D. Barthelmy, G. Cusumano, P. Giommi, A. Melandri, M. Perri, J.L. Racusin, B. Sbarufatti, M.H. Siegel, N. Gehrels, Relativistic jet activity from the tidal disruption of a star by a massive black hole. Nature 476, 421–424 (2011). doi:10.1038/nature10374

    ADS  Google Scholar 

  • M. Campanelli, C.O. Lousto, P. Marronetti, Y. Zlochower, Accurate evolutions of orbiting black-hole binaries without excision. Phys. Rev. Lett. 96(11), 111101 (2006). doi:10.1103/PhysRevLett.96.111101

    ADS  Google Scholar 

  • B. Carter, J.P. Luminet, Pancake detonation of stars by black holes in galactic nuclei. Nature 296, 211–214 (1982). doi:10.1038/296211a0

    ADS  Google Scholar 

  • S.B. Cenko, H.A. Krimm, A. Horesh, A. Rau, D.A. Frail, J.A. Kennea, A.J. Levan, S.T. Holland, N.R. Butler, R.M. Quimby, J.S. Bloom, A.V. Filippenko, A. Gal-Yam, J. Greiner, S.R. Kulkarni, E.O. Ofek, F.E. Olivares, P. Schady, J.M. Silverman, N.R. Tanvir, D. Xu, Swift J2058.4+0516: discovery of a possible second relativistic tidal disruption flare? Astrophys. J. 753, 77 (2012). doi:10.1088/0004-637X/753/1/77

    ADS  Google Scholar 

  • S. Chandrasekhar, Dynamical friction. I. General considerations: the coefficient of dynamical friction. Astrophys. J. 97, 255 (1943). doi:10.1086/144517

    ADS  MATH  MathSciNet  Google Scholar 

  • X. Chen, A. Sesana, P. Madau, F.K. Liu, Tidal stellar disruptions by massive black hole pairs. II. Decaying binaries. Astrophys. J. 729, 13 (2011). doi:10.1088/0004-637X/729/1/13

    ADS  Google Scholar 

  • F. Civano, M. Elvis, G. Lanzuisi, T. Aldcroft, M. Trichas, A. Bongiorno, M. Brusa, L. Blecha, A. Comastri, A. Loeb, M. Salvato, A. Fruscione, A. Koekemoer, S. Komossa, R. Gilli, V. Mainieri, E. Piconcelli, C. Vignali, Chandra high-resolution observations of CID-42, a candidate recoiling supermassive black hole. Astrophys. J. 752, 49 (2012). doi:10.1088/0004-637X/752/1/49

    ADS  Google Scholar 

  • L.L. Cowie, An investigation of the stability of the Bondi-Hoyle model of accretion flow. Mon. Not. R. Astron. Soc. 180, 491–494 (1977)

    ADS  Google Scholar 

  • J. Cuadra, P.J. Armitage, R.D. Alexander, M.C. Begelman, Massive black hole binary mergers within subparsec scale gas discs. Mon. Not. R. Astron. Soc. 393, 1423–1432 (2009). doi:10.1111/j.1365-2966.2008.14147.x

    ADS  Google Scholar 

  • L. Dai, A. Escala, P. Coppi, The impact of bound stellar orbits and general relativity on the temporal behavior of tidal disruption flares. ArXiv e-prints (2013)

  • S.W. Davis, R. Narayan, Y. Zhu, D. Barret, S.A. Farrell, O. Godet, M. Servillat, N.A. Webb, The cool accretion disk in ESO 243-49 HLX-1: further evidence of an intermediate-mass black hole. Astrophys. J. 734, 111 (2011). doi:10.1088/0004-637X/734/2/111

    ADS  Google Scholar 

  • F. De Colle, J. Guillochon, J. Naiman, E. Ramirez-Ruiz, The dynamics, appearance, and demographics of relativistic jets triggered by tidal disruption of stars in quiescent supermassive black holes. Astrophys. J. 760, 103 (2012). doi:10.1088/0004-637X/760/2/103

    ADS  Google Scholar 

  • C.D. Dermer, A. Atoyan, Collapse of neutron stars to black holes in binary systems: a model for short gamma-ray bursts. Astrophys. J. Lett. 643, 13–16 (2006). doi:10.1086/504895

    ADS  Google Scholar 

  • M. Dijkstra, Z. Haiman, A. Mesinger, J.S.B. Wyithe, Fluctuations in the high-redshift Lyman-Werner background: close halo pairs as the origin of supermassive black holes. Mon. Not. R. Astron. Soc. 391, 1961–1972 (2008). doi:10.1111/j.1365-2966.2008.14031.x

    ADS  Google Scholar 

  • D.J. D’Orazio, Z. Haiman, A. MacFadyen, Accretion into the central cavity of a circumbinary disk. ArXiv e-prints (2012)

  • M. Eracleous, T.A. Boroson, J.P. Halpern, J. Liu, A large systematic search for close supermassive binary and rapidly recoiling black holes. Astrophys. J. Suppl. Ser. 201, 23 (2012). doi:10.1088/0067-0049/201/2/23

    ADS  Google Scholar 

  • A. Escala, R.B. Larson, P.S. Coppi, D. Mardones, The role of gas in the merging of massive black holes in galactic nuclei. II. Black hole merging in a nuclear gas disk. Astrophys. J. 630, 152–166 (2005). doi:10.1086/431747

    ADS  Google Scholar 

  • G. Fabbiano, J. Wang, M. Elvis, G. Risaliti, A close nuclear black-hole pair in the spiral galaxy NGC3393. Nature 477, 431–434 (2011). doi:10.1038/nature10364

    ADS  Google Scholar 

  • R. Fernández, B.D. Metzger, Nuclear dominated accretion flows in two dimensions. I. Torus evolution with parametric microphysics. Astrophys. J. 763, 108 (2013). doi:10.1088/0004-637X/763/2/108

    ADS  Google Scholar 

  • T. Foglizzo, Non-radial instabilities of isothermal Bondi accretion with a shock: vortical-acoustic cycle vs. post-shock acceleration. Astron. Astrophys. 392, 353–368 (2002). doi:10.1051/0004-6361:20020912

    ADS  Google Scholar 

  • T. Foglizzo, P. Galletti, M. Ruffert, A fresh look at the unstable simulations of Bondi-Hoyle-Lyttleton accretion. Astron. Astrophys. 435, 397–411 (2005). doi:10.1051/0004-6361:20042201

    ADS  Google Scholar 

  • P.C. Fragile, A. Gillespie, T. Monahan, M. Rodriguez, P. Anninos, Numerical simulations of optically thick accretion onto a black hole. I. Spherical case. Astrophys. J. Suppl. Ser. 201, 9 (2012). doi:10.1088/0067-0049/201/2/9

    ADS  Google Scholar 

  • J. Frank, M.J. Rees, Effects of massive central black holes on dense stellar systems. Mon. Not. R. Astron. Soc. 176, 633–647 (1976)

    ADS  Google Scholar 

  • M. Freitag, M.A. Gürkan, F.A. Rasio, Runaway collisions in young star clusters—II. Numerical results. Mon. Not. R. Astron. Soc. 368, 141–161 (2006). doi:10.1111/j.1365-2966.2006.10096.x

    ADS  Google Scholar 

  • C.L. Fryer, Mass limits for black hole formation. Astrophys. J. 522, 413–418 (1999). doi:10.1086/307647

    ADS  Google Scholar 

  • B.A. Fryxell, R.E. Taam, Numerical simulation of nonaxisymmetric adiabatic accretion flow. Astrophys. J. 335, 862–880 (1988). doi:10.1086/166973

    ADS  Google Scholar 

  • S. Gezari, Ultraviolet and optical observations of tidal disruption events, in European Physical Journal Web of Conferences, vol. 39, 2012, p. 3001. doi:10.1051/epjconf/20123903001

    Google Scholar 

  • P. Goldreich, S. Tremaine, Disk-satellite interactions. Astrophys. J. 241, 425–441 (1980). doi:10.1086/158356

    ADS  MathSciNet  Google Scholar 

  • J. Goodman, R.R. Rafikov, Planetary torques as the viscosity of protoplanetary disks. Astrophys. J. 552, 793–802 (2001). doi:10.1086/320572

    ADS  Google Scholar 

  • J. Goodman, J.C. Tan, Supermassive stars in quasar disks. Astrophys. J. 608, 108–118 (2004). doi:10.1086/386360

    ADS  Google Scholar 

  • H.-J. Grimm, M. Gilfanov, R. Sunyaev, High-mass X-ray binaries as a star formation rate indicator in distant galaxies. Mon. Not. R. Astron. Soc. 339, 793–809 (2003). doi:10.1046/j.1365-8711.2003.06224.x

    ADS  Google Scholar 

  • J. Guilet, T. Foglizzo, On the linear growth mechanism driving the standing accretion shock instability. Mon. Not. R. Astron. Soc. 421, 546–560 (2012). doi:10.1111/j.1365-2966.2012.20333.x

    ADS  Google Scholar 

  • J. Guillochon, E. Ramirez-Ruiz, Hydrodynamical simulations to determine the feeding rate of black holes by the tidal disruption of stars: the importance of the impact parameter and stellar structure. Astrophys. J. 767, 25 (2013). doi:10.1088/0004-637X/767/1/25

    ADS  Google Scholar 

  • R. Haas, R.V. Shcherbakov, T. Bode, P. Laguna, Tidal disruptions of white dwarfs from ultra-close encounters with intermediate-mass spinning black holes. Astrophys. J. 749, 117 (2012). doi:10.1088/0004-637X/749/2/117

    ADS  Google Scholar 

  • Z. Haiman, B. Kocsis, K. Menou, The population of viscosity- and gravitational wave-driven supermassive black hole binaries among luminous active galactic nuclei. Astrophys. J. 700, 1952–1969 (2009). doi:10.1088/0004-637X/700/2/1952

    ADS  Google Scholar 

  • K. Hayasaki, S. Mineshige, L.C. Ho, A supermassive binary black hole with triple disks. Astrophys. J. 682, 1134–1140 (2008). doi:10.1086/588837

    ADS  Google Scholar 

  • K. Hayasaki, N. Stone, A. Loeb, Finite, intense accretion bursts from tidal disruption of stars on bound orbits. ArXiv e-prints (2012)

  • A. Heger, C.L. Fryer, S.E. Woosley, N. Langer, D.H. Hartmann, How massive single stars end their life. Astrophys. J. 591, 288–300 (2003). doi:10.1086/375341

    ADS  Google Scholar 

  • F. Hoyle, R.A. Lyttleton, The effect of interstellar matter on climatic variation. Proc. Camb. Philos. Soc. 35, 405 (1939). doi:10.1017/S0305004100021150

    ADS  Google Scholar 

  • P.B. Ivanov, J.C.B. Papaloizou, A.G. Polnarev, The evolution of a supermassive binary caused by an accretion disc. Mon. Not. R. Astron. Soc. 307, 79–90 (1999). doi:10.1046/j.1365-8711.1999.02623.x

    ADS  Google Scholar 

  • W. Ju, J.E. Greene, R.R. Rafikov, S.J. Bickerton, C. Badenes, Search for supermassive black hole binaries in the Sloan digital sky survey spectroscopic sample (2013). arXiv:1306.4987

  • M. Kesden, Black-hole spin dependence in the light curves of tidal disruption events. Phys. Rev. D 86(6), 064026 (2012a). doi:10.1103/PhysRevD.86.064026

    ADS  Google Scholar 

  • M. Kesden, Tidal-disruption rate of stars by spinning supermassive black holes. Phys. Rev. D 85(2), 024037 (2012b). doi:10.1103/PhysRevD.85.024037

    ADS  Google Scholar 

  • B. Kocsis, Z. Haiman, K. Menou, Premerger localization of gravitational wave standard sirens with LISA: triggered search for an electromagnetic counterpart. Astrophys. J. 684, 870–887 (2008). doi:10.1086/590230

    ADS  Google Scholar 

  • B. Kocsis, N. Yunes, A. Loeb, Observable signatures of extreme mass-ratio inspiral black hole binaries embedded in thin accretion disks. Phys. Rev. D 84(2), 024032 (2011). doi:10.1103/PhysRevD.84.024032

    ADS  Google Scholar 

  • B. Kocsis, Z. Haiman, A. Loeb, Gas pile-up, gap overflow and type 1.5 migration in circumbinary discs: application to supermassive black hole binaries. Mon. Not. R. Astron. Soc. 427, 2680–2700 (2012a). doi:10.1111/j.1365-2966.2012.22118.x

    ADS  Google Scholar 

  • B. Kocsis, Z. Haiman, A. Loeb, Gas pile-up, gap overflow and type 1.5 migration in circumbinary discs: general theory. Mon. Not. R. Astron. Soc. 427, 2660–2679 (2012b). doi:10.1111/j.1365-2966.2012.22129.x

    ADS  Google Scholar 

  • B. Kocsis, A. Ray, S. Portegies Zwart, Mapping the galactic center with gravitational wave measurements using pulsar timing. Astrophys. J. 752, 67 (2012c). doi:10.1088/0004-637X/752/1/67

    ADS  Google Scholar 

  • S. Komossa, Tidal disruption of stars by supermassive black holes: the X-ray view, in European Physical Journal Web of Conferences, vol. 39, 2012, p. 2001. doi:10.1051/epjconf/20123902001

    Google Scholar 

  • S. Komossa, V. Burwitz, G. Hasinger, P. Predehl, J.S. Kaastra, Y. Ikebe, Discovery of a binary active galactic nucleus in the ultraluminous infrared galaxy NGC 6240 using Chandra. Astrophys. J. Lett. 582, 15–19 (2003). doi:10.1086/346145

    ADS  Google Scholar 

  • K. Kotake, N. Ohnishi, S. Yamada, Gravitational radiation from standing accretion shock instability in core-collapse supernovae. Astrophys. J. 655, 406–415 (2007). doi:10.1086/509320

    ADS  Google Scholar 

  • M.R. Krumholz, C.F. McKee, R.I. Klein, Bondi accretion in the presence of vorticity. Astrophys. J. 618, 757–768 (2005). doi:10.1086/426051

    ADS  Google Scholar 

  • M.R. Krumholz, C.F. McKee, R.I. Klein, Bondi-Hoyle accretion in a turbulent medium. Astrophys. J. 638, 369–381 (2006). doi:10.1086/498844

    ADS  Google Scholar 

  • R.N. Lang, S.A. Hughes, N.J. Cornish, Measuring parameters of massive black hole binaries with partially aligned spins. Phys. Rev. D 84(2), 022002 (2011). doi:10.1103/PhysRevD.84.022002

    ADS  Google Scholar 

  • Y. Levin, Starbursts near supermassive black holes: young stars in the galactic centre, and gravitational waves in LISA band. Mon. Not. R. Astron. Soc. 374, 515–524 (2007). doi:10.1111/j.1365-2966.2006.11155.x

    ADS  Google Scholar 

  • F.K. Liu, X-shaped radio galaxies as observational evidence for the interaction of supermassive binary black holes and accretion disc at parsec scale. Mon. Not. R. Astron. Soc. 347, 1357–1369 (2004). doi:10.1111/j.1365-2966.2004.073

    ADS  Google Scholar 

  • F.K. Liu, X.-B. Wu, S.L. Cao, Double-double radio galaxies: remnants of merged supermassive binary black holes. Mon. Not. R. Astron. Soc. 340, 411–416 (2003). doi:10.1046/j.1365-8711.2003.06235.x

    ADS  Google Scholar 

  • G. Lodato, E.M. Rossi, Multiband light curves of tidal disruption events. Mon. Not. R. Astron. Soc. 410, 359–367 (2011). doi:10.1111/j.1365-2966.2010.17448.x

    ADS  Google Scholar 

  • G. Lodato, A.R. King, J.E. Pringle, Stellar disruption by a supermassive black hole: is the light curve really proportional to t−5/3? Mon. Not. R. Astron. Soc. 392, 332–340 (2009). doi:10.1111/j.1365-2966.2008.14049.x

    ADS  Google Scholar 

  • A. Loeb, F.A. Rasio, Collapse of primordial gas clouds and the formation of quasar black holes. Astrophys. J. 432, 52–61 (1994). doi:10.1086/174548

    ADS  Google Scholar 

  • F.D. Lora-Clavijo, F.S. Guzmán, Axisymmetric Bondi-Hoyle accretion on to a Schwarzschild black hole: shock cone vibrations. Mon. Not. R. Astron. Soc. 429, 3144–3154 (2013). doi:10.1093/mnras/sts573

    ADS  Google Scholar 

  • A.I. MacFadyen, M. Milosavljević, An eccentric circumbinary accretion disk and the detection of binary massive black holes. Astrophys. J. 672, 83–93 (2008). doi:10.1086/523869

    ADS  Google Scholar 

  • M. MacLeod, J. Guillochon, E. Ramirez-Ruiz, The tidal disruption of giant stars and their contribution to the flaring supermassive black hole population. Astrophys. J. 757, 134 (2012). doi:10.1088/0004-637X/757/2/134

    ADS  Google Scholar 

  • P. Madau, M.J. Rees, Massive black holes as population III remnants. Astrophys. J. Lett. 551, 27–30 (2001). doi:10.1086/319848

    ADS  Google Scholar 

  • P. Madau, M.J. Rees, M. Volonteri, F. Haardt, S.P. Oh, Early reionization by miniquasars. Astrophys. J. 604, 484–494 (2004). doi:10.1086/381935

    ADS  Google Scholar 

  • I. Mandel, D.A. Brown, J.R. Gair, M.C. Miller, Rates and characteristics of intermediate mass ratio inspirals detectable by advanced LIGO. Astrophys. J. 681, 1431–1447 (2008). doi:10.1086/588246

    ADS  Google Scholar 

  • B. McKernan, K.E.S. Ford, W. Lyra, H.B. Perets, Intermediate mass black holes in AGN discs—I. Production and growth. Mon. Not. R. Astron. Soc. 425, 460–469 (2012). doi:10.1111/j.1365-2966.2012.21486.x

    ADS  Google Scholar 

  • D. Merritt, R.D. Ekers, Tracing black hole mergers through radio lobe morphology. Science 297, 1310–1313 (2002). doi:10.1126/science.1074688

    ADS  Google Scholar 

  • M.C. Miller, E.J.M. Colbert, Intermediate-mass black holes. Int. J. Mod. Phys. D 13, 1–64 (2004). doi:10.1142/S0218271804004426

    ADS  MATH  Google Scholar 

  • M. Milosavljević, A. Loeb, The link between warm molecular disks in maser nuclei and star formation near the black hole at the galactic center. Astrophys. J. Lett. 604, 45–48 (2004). doi:10.1086/383467

    ADS  Google Scholar 

  • S. Mineo, M. Gilfanov, R. Sunyaev, X-ray emission from star-forming galaxies—I. High-mass X-ray binaries. Mon. Not. R. Astron. Soc. 419, 2095–2115 (2012). doi:10.1111/j.1365-2966.2011.19862.x

    ADS  Google Scholar 

  • J. Miralda-Escudé, J.A. Kollmeier, Star captures by quasar accretion disks: a possible explanation of the M-σ relation. Astrophys. J. 619, 30–40 (2005). doi:10.1086/426467

    ADS  Google Scholar 

  • M.P. Muno, J.S. Clark, P.A. Crowther, S.M. Dougherty, R. de Grijs, C. Law, S.L.W. McMillan, M.R. Morris, I. Negueruela, D. Pooley, S. Portegies Zwart, F. Yusef-Zadeh, A neutron star with a massive progenitor in Westerlund 1. Astrophys. J. Lett. 636, 41–44 (2006). doi:10.1086/499776

    ADS  Google Scholar 

  • K. Nakayama, Dynamical instability of standing shock waves in adiabatic accretion flows and wind flows. Mon. Not. R. Astron. Soc. 270, 871 (1994)

    ADS  Google Scholar 

  • R. Narayan, J.E. McClintock, Advection-dominated accretion and the black hole event horizon. New Astron. Rev. 51, 733–751 (2008). doi:10.1016/j.newar.2008.03.002

    ADS  Google Scholar 

  • R. Narayan, I. Yi, Advection-dominated accretion: a self-similar solution. Astrophys. J. Lett. 428, 13–16 (1994). doi:10.1086/187381

    ADS  Google Scholar 

  • R. Narayan, I.V. Igumenshchev, M.A. Abramowicz, Self-similar accretion flows with convection. Astrophys. J. 539, 798–808 (2000). doi:10.1086/309268

    ADS  Google Scholar 

  • S.C. Noble, B.C. Mundim, H. Nakano, J.H. Krolik, M. Campanelli, Y. Zlochower, N. Yunes, Circumbinary magnetohydrodynamic accretion into inspiraling binary black holes. Astrophys. J. 755, 51 (2012). doi:10.1088/0004-637X/755/1/51

    ADS  Google Scholar 

  • I.D. Novikov, K.S. Thorne, Astrophysics of black holes, in Black Holes (Les Astres Occlus), ed. by A. Giannaras, 1973, pp. 343–450

    Google Scholar 

  • R.M. O’Leary, A. Loeb, Star clusters around recoiled black holes in the Milky Way halo. Mon. Not. R. Astron. Soc. 395, 781–786 (2009). doi:10.1111/j.1365-2966.2009.14611.x

    ADS  Google Scholar 

  • R.M. O’Leary, F.A. Rasio, J.M. Fregeau, N. Ivanova, R. O’Shaughnessy, Binary mergers and growth of black holes in dense star clusters. Astrophys. J. 637, 937–951 (2006). doi:10.1086/498446

    ADS  Google Scholar 

  • R.M. O’Leary, B. Kocsis, A. Loeb, Gravitational waves from scattering of stellar-mass black holes in galactic nuclei. Mon. Not. R. Astron. Soc. 395, 2127–2146 (2009). doi:10.1111/j.1365-2966.2009.14653.x

    ADS  Google Scholar 

  • E.C. Ostriker, Dynamical friction in a gaseous medium. Astrophys. J. 513, 252–258 (1999). doi:10.1086/306858

    ADS  Google Scholar 

  • A. Paggi, G. Fabbiano, G. Risaliti, J. Wang, M. Elvis, Two Compton-thick active nuclei in Arp 220? ArXiv e-prints (2013)

  • V. Paschalidis, M. MacLeod, T.W. Baumgarte, S.L. Shapiro, Merger of white dwarf-neutron star binaries: prelude to hydrodynamic simulations in general relativity. Phys. Rev. D 80(2), 024006 (2009). doi:10.1103/PhysRevD.80.024006

    ADS  Google Scholar 

  • S.F. Portegies Zwart, S.L.W. McMillan, The runaway growth of intermediate-mass black holes in dense star clusters. Astrophys. J. 576, 899–907 (2002). doi:10.1086/341798

    ADS  Google Scholar 

  • S.F. Portegies Zwart, H. Baumgardt, S.L.W. McMillan, J. Makino, P. Hut, T. Ebisuzaki, The ecology of star clusters and intermediate-mass black holes in the galactic bulge. Astrophys. J. 641, 319–326 (2006). doi:10.1086/500361

    ADS  Google Scholar 

  • K.A. Postnov, L.R. Yungelson, The evolution of compact binary star systems. Living Rev. Relativ. 9, 6 (2006)

    ADS  Google Scholar 

  • F. Pretorius, Evolution of binary black-hole spacetimes. Phys. Rev. Lett. 95(12), 121101 (2005). doi:10.1103/PhysRevLett.95.121101

    ADS  MathSciNet  Google Scholar 

  • R.R. Rafikov, Structure and evolution of circumbinary disks around supermassive black hole (SMBH) binaries. ArXiv e-prints (2012)

  • P. Ranalli, A. Comastri, G. Setti, The 2-10 keV luminosity as a star formation rate indicator. Astron. Astrophys. 399, 39–50 (2003). doi:10.1051/0004-6361:20021600

    ADS  Google Scholar 

  • M.J. Rees, Accretion and the quasar phenomenon. Phys. Scr. 17, 193–200 (1978). doi:10.1088/0031-8949/17/3/010

    ADS  Google Scholar 

  • M.J. Rees, Tidal disruption of stars by black holes of 10 to the 6th-10 to the 8th solar masses in nearby galaxies. Nature 333, 523–528 (1988). doi:10.1038/333523a0

    ADS  Google Scholar 

  • J.A. Regan, M.G. Haehnelt, Pathways to massive black holes and compact star clusters in pre-galactic dark matter haloes with virial temperatures ≥ 10,000 K. Mon. Not. R. Astron. Soc. 396, 343–353 (2009). doi:10.1111/j.1365-2966.2009.14579.x

    ADS  Google Scholar 

  • Y. Rephaeli, E.E. Salpeter, Flow past a massive object and the gravitational drag. Astrophys. J. 240, 20–24 (1980). doi:10.1086/158202

    ADS  Google Scholar 

  • C. Rodriguez, G.B. Taylor, R.T. Zavala, A.B. Peck, L.K. Pollack, R.W. Romani, A compact supermassive binary black hole system. Astrophys. J. 646, 49–60 (2006). doi:10.1086/504825

    ADS  Google Scholar 

  • C. Roedig, O. Zanotti, D. Alic, General relativistic radiation hydrodynamics of accretion flows—II. Treating stiff source terms and exploring physical limitations. Mon. Not. R. Astron. Soc. 426, 1613–1631 (2012). doi:10.1111/j.1365-2966.2012.21821.x

    ADS  Google Scholar 

  • N. Roos, J.S. Kaastra, C.A. Hummel, A massive binary black hole in 1928 + 738? Astrophys. J. 409, 130–133 (1993). doi:10.1086/172647

    ADS  Google Scholar 

  • S. Rosswog, E. Ramirez-Ruiz, W.R. Hix, Tidal disruption and ignition of white dwarfs by moderately massive black holes. Astrophys. J. 695, 404–419 (2009). doi:10.1088/0004-637X/695/1/404

    ADS  Google Scholar 

  • M. Ruffert, Three-dimensional hydrodynamic Bondi-Hoyle accretion. 1: code validation and stationary accretors. Astrophys. J. 427, 342–350 (1994). doi:10.1086/174144

    ADS  Google Scholar 

  • M. Ruffert, Non-axisymmetric wind-accretion simulations. II. Density gradients. Astron. Astrophys. 346, 861–877 (1999)

    ADS  Google Scholar 

  • M. Saijo, T.W. Baumgarte, S.L. Shapiro, M. Shibata, Collapse of a rotating supermassive star to a supermassive black hole: post-Newtonian simulations. Astrophys. J. 569, 349–361 (2002). doi:10.1086/339268

    ADS  Google Scholar 

  • A.P. Schoenmakers, A.G. de Bruyn, H.J.A. Röttgering, H. van der Laan, C.R. Kaiser, Radio galaxies with a ‘double-double morphology’—I. Analysis of the radio properties and evidence for interrupted activity in active galactic nuclei. Mon. Not. R. Astron. Soc. 315, 371–380 (2000). doi:10.1046/j.1365-8711.2000.03430.x

    ADS  Google Scholar 

  • N.I. Shakura, R.A. Sunyaev, Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973)

    ADS  Google Scholar 

  • S.L. Shapiro, S.A. Teukolsky, Black holes, white dwarfs, and neutron stars: the physics of compact objects, in 14.2. Collisionless Spherical Accretion (1983a)

    Google Scholar 

  • S.L. Shapiro, S.A. Teukolsky, Black holes, white dwarfs, and neutron stars: the physics of compact objects, in 12. Black Holes (eq. 12.4.30 and 12.7.25) (1983b)

    Google Scholar 

  • Y. Shen, A. Loeb, Identifying supermassive black hole binaries with broad emission line diagnosis. Astrophys. J. 725, 249–260 (2010). doi:10.1088/0004-637X/725/1/249

    ADS  Google Scholar 

  • J.-M. Shi, J.H. Krolik, S.H. Lubow, J.F. Hawley, Three-dimensional magnetohydrodynamic simulations of circumbinary accretion disks: disk structures and angular momentum transport. Astrophys. J. 749, 118 (2012). doi:10.1088/0004-637X/749/2/118

    ADS  Google Scholar 

  • N. Soker, Stability analysis of the accretion line. Astrophys. J. 358, 545–550 (1990). doi:10.1086/169007

    ADS  Google Scholar 

  • N. Soker, Nonlinear instability of the accretion line. Astrophys. J. 376, 750–756 (1991). doi:10.1086/170322

    ADS  Google Scholar 

  • N. Stone, A. Loeb, Observing Lense-Thirring precession in tidal disruption flares. Phys. Rev. Lett. 108(6), 061302 (2012a). doi:10.1103/PhysRevLett.108.061302

    ADS  Google Scholar 

  • N. Stone, A. Loeb, Tidal disruption flares of stars from moderately recoiled black holes. Mon. Not. R. Astron. Soc. 422, 1933–1947 (2012b). doi:10.1111/j.1365-2966.2012.20577.x

    ADS  Google Scholar 

  • N. Stone, R. Sari, A. Loeb, Consequences of strong compression in tidal disruption events. ArXiv e-prints (2012)

  • L.E. Strubbe, E. Quataert, Optical flares from the tidal disruption of stars by massive black holes. Mon. Not. R. Astron. Soc. 400, 2070–2084 (2009). doi:10.1111/j.1365-2966.2009.15599.x

    ADS  Google Scholar 

  • H. Sudou, S. Iguchi, Y. Murata, Y. Taniguchi, Orbital motion in the radio galaxy 3C 66B: evidence for a supermassive black hole binary. Science 300, 1263–1265 (2003). doi:10.1126/science.1082817

    ADS  Google Scholar 

  • T. Tanaka, Z. Haiman, The assembly of supermassive black holes at high redshifts. Astrophys. J. 696, 1798–1822 (2009). doi:10.1088/0004-637X/696/2/1798

    ADS  Google Scholar 

  • A. Tchekhovskoy, B.D. Metzger, D. Giannios, L.Z. Kelley, Swift J1644+57 gone MAD: the case for dynamically-important magnetic flux threading the black hole in a jetted tidal disruption event. ArXiv e-prints (2013)

  • K.S. Thorne, A.N. Zytkow, Stars with degenerate neutron cores. I—structure of equilibrium models. Astrophys. J. 212, 832–858 (1977). doi:10.1086/155109

    ADS  Google Scholar 

  • M. Ugliano, H.-T. Janka, A. Marek, A. Arcones, Progenitor-explosion connection and remnant birth masses for neutrino-driven supernovae of iron-core progenitors. Astrophys. J. 757, 69 (2012). doi:10.1088/0004-637X/757/1/69

    ADS  Google Scholar 

  • S. van Velzen, G.R. Farrar, The rate of stellar tidal disruption flares from sdss data, in European Physical Journal Web of Conferences, vol. 39, 2012, p. 8002. doi:10.1051/epjconf/20123908002

    Google Scholar 

  • J. Wang, D. Merritt, Revised rates of stellar disruption in galactic nuclei. Astrophys. J. 600, 149–161 (2004). doi:10.1086/379767

    ADS  Google Scholar 

  • N. Webb, D. Cseh, E. Lenc, O. Godet, D. Barret, S. Corbel, S. Farrell, R. Fender, N. Gehrels, I. Heywood, Radio detections during two state transitions of the intermediate-mass black hole HLX-1. Science 337, 554 (2012). doi:10.1126/science.1222779

    ADS  Google Scholar 

  • J.S.B. Wyithe, A. Loeb, Low-frequency gravitational waves from massive black hole binaries: predictions for LISA and pulsar timing arrays. Astrophys. J. 590, 691–706 (2003). doi:10.1086/375187

    ADS  Google Scholar 

  • J.S.B. Wyithe, A. Loeb, Detection of gravitational waves from the coalescence of population III remnants with advanced LIGO. Astrophys. J. 612, 597–601 (2004). doi:10.1086/422183

    ADS  Google Scholar 

  • J.S.B. Wyithe, A. Loeb, Photon trapping enables super-Eddington growth of black hole seeds in galaxies at high redshift. Mon. Not. R. Astron. Soc. 425, 2892–2902 (2012). doi:10.1111/j.1365-2966.2012.21127.x

    ADS  Google Scholar 

  • O. Zanotti, C. Roedig, L. Rezzolla, L. Del Zanna, General relativistic radiation hydrodynamics of accretion flows—I. Bondi-Hoyle accretion. Mon. Not. R. Astron. Soc. 417, 2899–2915 (2011). doi:10.1111/j.1365-2966.2011.19451.x

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bence Kocsis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kocsis, B., Loeb, A. Menus for Feeding Black Holes. Space Sci Rev 183, 163–187 (2014). https://doi.org/10.1007/s11214-013-0015-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-013-0015-5

Keywords

Navigation