Skip to main content
Log in

The Radiation Assessment Detector (RAD) Investigation

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) is an energetic particle detector designed to measure a broad spectrum of energetic particle radiation. It will make the first-ever direct radiation measurements on the surface of Mars, detecting galactic cosmic rays, solar energetic particles, secondary neutrons, and other secondary particles created both in the atmosphere and in the Martian regolith. The radiation environment on Mars, both past and present, may have implications for habitability and the ability to sustain life. Radiation exposure is also a major concern for future human missions. The RAD instrument combines charged- and neutral-particle detection capability over a wide dynamic range in a compact, low-mass, low-power instrument. These capabilities are required in order to measure all the important components of the radiation environment.

RAD consists of the RAD Sensor Head (RSH) and the RAD Electronics Box (REB) integrated together in a small, compact volume. The RSH contains a solid-state detector telescope with three silicon PIN diodes for charged particle detection, a thallium doped Cesium Iodide scintillator, plastic scintillators for neutron detection and anti-coincidence shielding, and the front-end electronics. The REB contains three circuit boards, one with a novel mixed-signal ASIC for processing analog signals and an associated control FPGA, another with a second FPGA to communicate with the rover and perform onboard analysis of science data, and a third board with power supplies and power cycling or “sleep”-control electronics. The latter enables autonomous operation, independent of commands from the rover. RAD is a highly capable and highly configurable instrument that paves the way for future compact energetic particle detectors in space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. Scaling to LET assumes a constant ratio between dE/dx in silicon and dE/dx in water. This is a good approximation at high energies, but it becomes less accurate below about 200 MeV/nuc.

References

  • S. Agostinelli et al., GEANT4—a simulation toolkit. Nucl. Instrum. Methods A 506, 250 (2003)

    Article  ADS  Google Scholar 

  • G. Battistoni et al., Hadronic models for cosmic ray physics: the FLUKA code. Nucl. Phys. B 175–176, 88 (2008)

    Google Scholar 

  • G.A. Bazilevskaya et al., Cosmic ray induced ion production in the atmosphere. Space Sci. Rev. 137, 149 (2008)

    Article  ADS  Google Scholar 

  • J.-P. Bibring et al., Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312(5772), 400 (2006)

    Article  ADS  Google Scholar 

  • J.B. Birks, The Theory and Practice of Scintillation Counting (Pergamon Press, New York, 1964)

    Google Scholar 

  • D. Blake, D. Vaniman, R. Anderson, D. Bish, S. Chipera, S. Chemtob, J. Crisp et al., The CheMin mineralogical instrument on the Mars Science Laboratory mission, in 40th Lunar and Planetary Science Conference, March 23–27, 2009, Paper #1484

    Google Scholar 

  • W.V. Boynton et al., Distribution of hydrogen in the near surface of Mars: Evidence for subsurface ice deposits. Science 297, 81 (2002)

    Article  ADS  Google Scholar 

  • W.V. Boynton et al., The Mars Odyssey Gamma-Ray Spectrometer instrument suite. Space Sci. Rev. 110, 37 (2004)

    Article  ADS  Google Scholar 

  • M.A. Bullock, J.M. Moore, Atmospheric conditions on early Mars and the missing layered carbonates. Geophys. Res. Lett. 34, L19201 (2007)

    Article  ADS  Google Scholar 

  • M.A. Bullock, C.R. Stoker, C.P. McKay, A.P. Zent, A coupled soil-atmosphere model of H2O2 on Mars. Icarus 107, 142 (1994)

    Article  ADS  Google Scholar 

  • W.R. Burrus, V.V. Verbinski, Fast-neutron spectroscopy with thick organic scintillators. Nucl. Instrum. Methods 67, 181 (1969)

    Article  ADS  Google Scholar 

  • H.V. Cane, L.G. Richardson, T.T. von Rosenvinge, A study of solar energetic particle events of 1997–2006: Their composition and associations. J. Geophys. Res. 115, A08101 (2010)

    Article  ADS  Google Scholar 

  • C.R. Chapman, Space weathering of asteroid surfaces. Annu. Rev. Earth Planet. Sci. 32, 539–567 (2004)

    Article  ADS  Google Scholar 

  • P. Chowdhury, B.N. Dwivedi, P.C. Ray, Solar modulation of galactic cosmic rays during 19–23 solar cycles. New Astron. 16, 430 (2011)

    Article  ADS  Google Scholar 

  • P.R. Christensen, Formation of recent Martian gullies through melting of extensive water-rich snow deposits. Nature 422, 45 (2003)

    Article  ADS  Google Scholar 

  • M.S. Clowdsley, J.W. Wilson, M.-Y. Kim, R.C. Singleterry, R.K. Tripathi, J.H. Heinbockel, F.F. Badavi, J.L. Shinn, Neutron environments on the Martian surface. Phys. Med. 17(Suppl. 1), 94 (2001)

    Google Scholar 

  • R. Craun, D. Smith, Analysis of response data for several organic scintillators. Nucl. Instrum. Methods 80, 239–244 (1970)

    Article  ADS  Google Scholar 

  • F.A. Cucinotta, L.J. Chappell, Updates to radiation risks limits for astronauts: risks for never-smokers. Radiat. Res. 176, 102 (2011)

    Article  Google Scholar 

  • F.A. Cucinotta, W. Schimmerling, J.W. Wilson, L.E. Peterson, G.D. Badhwar, P.B. Saganti, J.F. Dicello, Space radiation cancer risks and uncertainties for Mars missions. Radiat. Res. 156, 682 (2001)

    Article  Google Scholar 

  • F.A. Cucinotta, P.B. Saganti, J.W. Wilson, L.C. Simonsen, Model predictions and visualization of the particle flux on the surface of Mars. J. Radiat. Res. 43, S35 (2002)

    Article  Google Scholar 

  • F.A. Cucinotta, M. Durante, Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings. Lancet Oncol. 7, 431 (2006)

    Article  Google Scholar 

  • F.A. Cucinotta, M.-Y. Kim, S.I. Schneider, D.M. Hassler, Description of light ion production cross sections and fluxes on the Mars surface using the QMSFRG model. Radiat. Environ. Biophys. 46, 101 (2007)

    Article  Google Scholar 

  • F.A. Cucinotta, L. Chappell, M.Y. Kim, Space radiation cancer risk projections and uncertainties—2010, NASA TP 2011-216155 (2011)

  • L.R. Dartnell, L. Desorgher, J.M. Ward, A.J. Coates, Modelling the surface and subsurface Martian radiation environment: implications for astrobiology. Geophys. Res. Lett. 34, L02207 (2007a)

    Article  Google Scholar 

  • L.R. Dartnell, L. Desorgher, J.M. Ward, A.J. Coates, Martian sub-surface ionizing radiation: biosignatures and geology. Biogeosciences 4, 545–558 (2007b)

    Article  ADS  Google Scholar 

  • G. De Angelis, J.W. Wilson, M.S. Clowdsley, G.D. Quallys, R.C. Singleterry, Modeling of the Martian environment for radiation analysis. Radiat. Meas. 41, 1097 (2006)

    Article  Google Scholar 

  • G. De Angelis, F.F. Badavi, S.R. Blattnig, M.S. Clowdsley, J.E. Nealy, G.D. Qualls, R.C. Singleterry, R.K. Tripathi, J.W. Wilson, Modeling of the Martian environment for radiation analysis. Nucl. Phys. B 166, 184 (2007)

    Article  Google Scholar 

  • G.T. Delory, J.G. Luhmann, D. Brain, R.J. Lillis, D.L. Mitchell, R.A. Mewaldt, T.V. Falkenberg, Energetic particles detected by the Electron Reflectometer instrument on the Mars Global Surveyor, 1999–2006. Space Weather (2012). doi:10.1029/2012SW000781

    Google Scholar 

  • L. Dorman, L. Pustil’nik, A. Sternlieb, I. Zukerman, Using ground-level cosmic ray observations for automatically generating predictions of hazardous energetic particle levels. Adv. Space Res. 31, 847 (2003)

    Article  ADS  Google Scholar 

  • B.G. Drake (ed.), Human Exploration of Mars Design Reference Architecture 5.0. NASA/SP-2009-566 (2009)

  • B. Ehresmann, S. Burmeister, R.-F. Wimmer-Schweingruber, G. Reitz, Influence of higher atmospheric pressure on the Martian radiation environment: Implications for possible habitability in the Noachian epoch. J. Geophys. Res. 116, A10106 (2011)

    Article  ADS  Google Scholar 

  • G. Failla, Biological effects of ionizing radiations. J. Appl. Phys. 12, 279 (1941)

    Article  ADS  Google Scholar 

  • A.G. Fairén, D. Schulze-Makuch, A.P. Rodríguez, W. Fink, A.F. Davila, E.R. Uceda, R. Furfaro, R. Amils, C.P. McKay, Evidence for Amazonian acidic liquid water on Mars—A reinterpretation of MER mission results. Planet. Space Sci. 57, 276 (2009)

    Article  ADS  Google Scholar 

  • A. Fassò et al., The FLUKA code: present application and future developments, in Computing in High Energy and Nuclear Physics, La Jolla, CA, USA (2003)

    Google Scholar 

  • F. Forget, R.T. Pierrehumbert, Warming early Mars with carbon dioxide clouds that scatter infrared radiation. Science 278, 1273 (1997)

    Article  ADS  Google Scholar 

  • J. Gómez-Elvira et al. (REMS team), Environmental monitoring station for Mars Science Laboratory, in Third International Workshop on the Mars Atmosphere: Modeling and Observations, Williamsburg, Virginia, November 10–13, 2008

    Google Scholar 

  • D. Grinspoon, Lonely Planets: The Natural Philosophy of Alien Life (HarperCollins, New York, 2003)

    Google Scholar 

  • R.M. Haberle, Early Mars climate models. J. Geophys. Res. 103(28), 28,467–28,479 (1998)

    ADS  Google Scholar 

  • R.M. Haberle, J.B. Pollack, J.R. Barnes, R.W. Zurek, C.B. Leovy, J.R. Murphy, J. Schaeffer, H. Lee, Mars atmospheric dynamics as simulated by the NASA/Ames general circulation model I. The zonal mean circulation. J. Geophys. Res. 98, 3093 (1993)

    Article  ADS  Google Scholar 

  • R.M. Haberle et al., Orbital change experiments with a Mars General Circulation Model. Icarus 161, 66–89 (2003)

    Article  ADS  Google Scholar 

  • B. Hapke, Space weathering from Mercury to the asteroid belt. J. Geophys. Res. 106, 10,039 (2001)

    Article  ADS  Google Scholar 

  • D.H. Hathaway, A standard law for the equatorward drift of the sunspot zones. Sol. Phys. 273, 221 (2011)

    Article  ADS  Google Scholar 

  • J.W. Head, L. Wilson, K.L. Mitchell, Generation of recent massive water floods at Cerberus Fossae, Mars by dike emplacement, cryospheric cracking, and confined aquifer groundwater release. Geophys. Res. Lett. 30, 1577 (2003)

    Article  ADS  Google Scholar 

  • M. Hecht et al., Detection of perchlorate and the soluble chemistry of the Martian soil at the Phoenix lander site. Science 325, 64–67 (2009)

    ADS  Google Scholar 

  • S.L. Hess, R.M. Henry, C.B. Leovy, J.A. Ryan, J.E. Tillman, Meteorological results from the surface of Mars: Viking 1 and 2. J. Geophys. Res. 82, 4559 (1977)

    Article  ADS  Google Scholar 

  • S.L. Hess, R.M. Henry, J.E. Tillman, The seasonal variation of atmospheric pressure on Mars as affected by the south polar cap. J. Geophys. Res. 84, 2923 (1979)

    Article  ADS  Google Scholar 

  • International Commission on Radiological Protection (ICRP), ICRP Publication 60: 1990 Recommendations of the International Commission on Radiological Protection, Ann. ICRP 21 (1–3) (1991)

  • B.M. Jakosky, R.C. Reedy, J. Masarik, Carbon 14 measurements of the Martian atmosphere as an indicator of atmosphere-regolith exchange of CO2. J. Geophys. Res. 101, 2247 (1996)

    Article  ADS  Google Scholar 

  • J.R. Johnson, W.M. Grundy, M.T. Lemmon, Dust deposition at the Mars Pathfinder landing site: observations and modeling of visible/near-infrared spectra. Icarus 163, 330 (2003)

    Article  ADS  Google Scholar 

  • J. Köhler, B. Ehresmann, C. Martin, E. Böhm, A. Kharytonov, O. Kortmann, C. Zeitlin, D.M. Hassler, R.F. Wimmer-Schweingruber, Inversion of neutron/gamma spectra from scintillator measurements. Nucl. Instrum. Methods B 269, 2641 (2011)

    Article  ADS  Google Scholar 

  • O. Kortmann, Scintillator performance investigation for MSL/RAD, Ph.D. thesis, Christian-Albrechts-Universität zu Kiel (2010)

  • J. Laskar, B. Levrard, J.F. Mustard, Orbital forcing of the Martian polar layered deposits. Nature 419, 375–377 (2002)

    Article  ADS  Google Scholar 

  • J.G. Luhmann, C. Zeitlin, R. Turner, D.A. Brain, G. Delory, L.G. Lyon, W. Boynton, Solar energetic particles in near-Mars space. J. Geophys. Res. 112, E10001 (2007)

    Article  ADS  Google Scholar 

  • P.R. Mahaffy et al., The sample analysis at Mars investigation and instrument suite. Space Sci. Rev. (2012). doi:10.1007/s11214-012-9879-z

    Google Scholar 

  • F.B. McDonald, G.H. Ludwig, Measurement of low energy primary cosmic ray protons on the IMP-1 satellite. Phys. Rev. Lett. 13, 783 (1964).

    Article  ADS  Google Scholar 

  • R.A. Mewaldt et al., Galactic Cosmic Ray intensities reach record levels in 2009, in American Geophysical Union Fall Meeting, 2009, abstract #SH13C-08

    Google Scholar 

  • C. Mileikowsky, F. Cucinotta, J.W. Wilson, B. Gladman, G. Horneck, L. Lindgren, H.J. Melosh, H. Rickman, M.J. Valtonen, J.Q. Zheng, Natural transfer of viable microbes in space. Part 1: From Mars to Earth and Earth to Mars. Icarus 145, 391–427 (2000)

    Article  ADS  Google Scholar 

  • I. Mitrofanov et al., Maps of subsurface hydrogen from the High Energy Neutron Detector, Mars Odyssey. Science 297, 78 (2002)

    Article  ADS  Google Scholar 

  • R. Müller-Mellin et al., COSTEP—comprehensive suprathermal ad energetic particle analyzer. Sol. Phys. 162, 483 (1995)

    Article  ADS  Google Scholar 

  • K. Nakamura et al. (Particle Data Group), Review of particle physics. J. Phys. G, Nucl. Part. Phys. 37, 075021 (2010)

    Article  ADS  Google Scholar 

  • NCRP (National Council on Radiation Protection & Measurements), Report No. 132—Radiation Protection Guidance for Activities in Low-Earth Orbit (2000)

  • NRC (National Research Council), Committee on the Evaluation of Radiation Shielding for Space Exploration, Managing Space Radiation Risk in the New Era of Space Exploration (National Academies Press, Washington, 2008). Chap. 3: “Radiation Effects” and references therein

    Google Scholar 

  • P.M. O’Neill, Badhwar-O’Neill 2010 galactic cosmic ray flux model—revised. IEEE Trans. Nucl. Sci. 57, 3148 (2010)

    Google Scholar 

  • N. Pace, The universal nature of biochemistry. Proc. Natl. Acad. Sci. USA 98, 805 (2001)

    Article  ADS  Google Scholar 

  • A.K. Pavlov, A.V. Blinov, A.N. Konstantinov, Sterilization of Martian surface by cosmic radiation. Planet. Space Sci. 50, 669 (2002)

    Article  ADS  Google Scholar 

  • G. Pfotzer, Dreifachkoinzidenzen der Ultrastrahlung aus vertikaler Richtung in der Stratosphäre. Z. Phys. 102, 23 (1936)

    Article  ADS  Google Scholar 

  • J.B. Pollack, J.F. Kasting, S.M. Richardson, K. Poliakoff, The case for a wet, warm climate on early Mars. Icarus 71, 203 (1987)

    Article  ADS  Google Scholar 

  • A. Posner, H. Kunow, Energy dispersion in solar ion events over 4 orders of magnitude: SOHO/COSTEP and Wind/STICS, in Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, ed. by T. Kajita et al., vol. 6 (Univ. Acad. Press, Tokyo, 2003), p. 3309

    Google Scholar 

  • A. Posner, D.M. Hassler, D.J. McComas, S. Rafkin, R.F. Wimmer-Schweingruber, E. Bohm, S. Bottcher, S. Burmeister, W. Droge, B. Heber, A high energy telescope for the Solar Orbiter. Adv. Space Res. 36, 1426 (1995)

    Article  ADS  Google Scholar 

  • A.V. Prokofiev, O. Byström, C. Ekström, V. Ziemann, J. Blomgren, S. Pomp, M. Österlund, U. Tippawan, A new neutron beam facility at TSL, in International Workshop on Fast Neutron Detectors, University of Cape Town, South Africa, April 3–6, 2006

    Google Scholar 

  • R.C. Reedy, S.D. Howe, The Martian radiation environment from orbit and on the surface, in Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration, Lunar and Planetary Institute, Houston, TX, Oct 2–4, 1999

    Google Scholar 

  • P.B. Saganti, F.A. Cucinotta, J.W. Wilson, L.C. Simonsen, C. Zeitlin, Radiation climate map for analyzing risks to astronauts on the Mars surface from galactic cosmic rays. Space Sci. Rev. 110, 143 (2004)

    Article  ADS  Google Scholar 

  • J.T. Schofield, J.R. Barnes, D. Crisp, R.M. Haberle, S. Larsen, J.A. Magalhães, J.R. Murphy, A. Seiff, G. Wilson, The Mars Pathfinder Atmospheric Structure Investigation & Meteorology (ASI/MET) Experiment. Science 278, 1752 (1997)

    Article  ADS  Google Scholar 

  • N.A. Schwadron et al., Lunar radiation environment and space weathering from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER). J. Geophys. Res. 117, E00H13 (2012)

    Article  ADS  Google Scholar 

  • A.L. Sprague, W.V. Boynton, K.E. Kerry, D.M. Janes, D.M. Hunten, K.J. Kim, R.C. Reedy, A.E. Metzger, ‘Mars’ south polar Ar enhancement: A tracer for south polar seasonal meridional mixing. Science 306, 1364 (2004)

    Article  ADS  Google Scholar 

  • A.L. Sprague, W.V. Boynton, K.E. Kerry, D.M. Janes, N.J. Kelly, M.K. Crombie, S.M. Nelli, J.R. Murphy, R.C. Reedy, A.E. Metzger, Mars’ atmospheric argon: Tracer for understanding Martian atmospheric circulation and dynamics. J. Geophys. Res. 112, E03S02 (2007)

    Article  ADS  Google Scholar 

  • S.W. Squyres, A.H. Knoll, Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars. Earth Planet. Sci. Lett. 240, 1 (2005)

    Article  ADS  Google Scholar 

  • J.E. Tillman, Mars global atmospheric oscillations: Annually synchronized, transient normal-mode oscillations and the triggering of global dust storms. J. Geophys. Res. 93, 9433 (1988)

    Article  ADS  Google Scholar 

  • L.W. Townsend, J.E. Nealy, J.W. Wilson, L.C. Simonsen, Estimates of galactic cosmic ray shielding requirements during solar minimum, NASA TM-4167 (1990)

  • L.W. Townsend, J.L. Shinn, J.W. Wilson, Interplanetary crew exposure estimates for the August 1972 and October 1989 Solar Particle Events. Radiat. Res. 126, 108–110 (1991)

    Article  Google Scholar 

  • V.I. Tretyakov, A.S. Kozyrev, M.L. Litvak, A.V. Malakhov, I.G. Mitrofanov, M.I. Mokrousov, A.B. Sanin, A.A. Vostrukhin, Comparison of neutron environment and neutron component of radiation doze for space around Earth and Mars from data of instruments HEND/Mars Odyssey and BTN/ISS, in 40th Lunar and Planetary Science Conference (2009), paper #1292

    Google Scholar 

  • R.K. Tripathi, J.E. Nealy, Mars radiation risk assessment and shielding design for long-term exposure to ionizing space radiation, in IEEE Aerospace Conference, March 1–8, 2008, paper #1291

    Google Scholar 

  • L.S. Waters, G.W. McKinney, J.W. Durkee, M.L. Fensin, J.S. Hendricks, M.R. James, R.C. Johns, D.B. Pelowitz, The MCNPX Monte Carlo radiation transport code. AIP Conf. Proc. 896, 81 (2007)

    Article  ADS  Google Scholar 

  • J.W. Wilson, J.L. Shinn, L.W. Townsend, R.K. Tripathi, F.F. Badavi, S.Y. Chun, NUCFRG2: a semiempirical nuclear fragmentation model. Nucl. Instrum. Methods B 94, 95–102 (1994)

    Article  ADS  Google Scholar 

  • J.W. Wilson, F. Badavi, F.A. Cucinotta, J.L. Shinn, G.D. Badhwar, R. Silberberg, C.H. Tsao, L.W. Townsend, R.K. Tripathi et al. HZETRN: Description of a free-space ion and nucleon transport and shielding computer program, NASA Technical Paper No. 3495 (1995)

  • J.W. Wilson, M.Y. Kim, M.S. Clowdsley, J.H. Heinbockel, R.K. Tripathi, R.C. Singleterry, J.L. Shinn, R. Suggs, Mars surface ionizing radiation environment: Need for validation, in Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration, Lunar and Planetary Institute, Houston, TX, Oct 2–4, 1999

    Google Scholar 

  • J.W. Wilson, F.A. Cucinotta, M.-H.Y. Kim, W. Schimmerling, Optimized shielding for space radiation protection. Phys. Med. XVII(Suppl. 1), 67 (2001)

    Google Scholar 

  • C.H. Yang, L.M. Craise, M. Durante, M. Mei, Heavy-ion induced genetic changes and evolution processes. Adv. Space Res. 14, 373 (1994)

    Article  ADS  Google Scholar 

  • C. Zeitlin, L. Heilbronn, J. Miller, W. Schimmerling, L.W. Townsend, R.K. Tripathi, J.W. Wilson, The fragmentation of 510 MeV/nucleon Iron-56 in polyethylene, II. Comparisons between data and a model. Radiat. Res. 145, 666 (1996)

    Article  Google Scholar 

  • C. Zeitlin, D.M. Hassler et al., Mars Odyssey measurements of galactic cosmic rays and solar particles in Mars orbit, 2002–2008. Space Weather 8, S00E06 (2010a)

    Article  Google Scholar 

  • C. Zeitlin, S. Guetersloh, L. Heilbronn, J. Miller, A. Fukumura, Y. Iwata, T. Murakami, L. Sihver, Nuclear fragmentation database for GCR transport code development. Adv. Space Res. 46, 728 (2010b)

    Article  ADS  Google Scholar 

  • A.P. Zent, C.P. McKay, The chemical reactivity of the Martian soil and implications for future missions. Icarus 108, 146–157 (1994)

    Article  ADS  Google Scholar 

  • A.P. Zent, R.C. Quinn, Simultaneous adsorption of CO2 and H2O under Mars-like conditions and application to the evolution of the Martian climate. J. Geophys. Res. 100, 5341 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

RAD is supported by NASA (HEOMD) under JPL subcontract #1273039 to Southwest Research Institute and in Germany by DLR and DLR’s Space Administration grant 50QM0501 to the Christian-Albrechts-University (CAU) Kiel. We would like to extend a huge thanks to Jeff Simmonds (MSL Payload Manager) and the Project Science Team John Grotzinger, Joy Crisp, and Ashwin Vasvada, the NASA Program Scientist Michael Meyer, and the first Project Scientist Edward Stolper. We would also like to extend a special thanks to Chris Moore and Gale Allen at NASA HQ (HEOMD) and Heiner Witte at DLR in Germany for their unwavering support of RAD over the years. Support for RAD calibration beam time at BNL/NSRL has been provided by the NASA HRP Program. We also thank the management and operators of the HIMAC facility at NIRS (Chiba, Japan), TSL in Uppsala, Sweden, and iThemba Labs in South Africa for their many hours of excellent beam time and support of RAD calibration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Hassler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassler, D.M., Zeitlin, C., Wimmer-Schweingruber, R.F. et al. The Radiation Assessment Detector (RAD) Investigation. Space Sci Rev 170, 503–558 (2012). https://doi.org/10.1007/s11214-012-9913-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-012-9913-1

Keywords

Navigation