Skip to main content
Log in

Effects of Thomson-Scattering Geometry on White-Light Imaging of an Interplanetary Shock: Synthetic Observations from Forward Magnetohydrodynamic Modelling

  • OBSERVATIONS AND MODELLING OF THE INNER HELIOSPHERE
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Stereoscopic white-light imaging of a large portion of the inner heliosphere has been used to track interplanetary coronal mass ejections. At large elongations from the Sun, the white-light brightness depends on both the local electron density and the efficiency of the Thomson-scattering process. To quantify the effects of the Thomson-scattering geometry, we study an interplanetary shock using forward magnetohydrodynamic simulation and synthetic white-light imaging. Identifiable as an inclined streak of enhanced brightness in a time–elongation map, the travelling shock can be readily imaged by an observer located within a wide range of longitudes in the ecliptic. Different parts of the shock front contribute to the imaged brightness pattern viewed by observers at different longitudes. Moreover, even for an observer located at a fixed longitude, a different part of the shock front will contribute to the imaged brightness at any given time. The observed brightness within each imaging pixel results from a weighted integral along its corresponding ray-path. It is possible to infer the longitudinal location of the shock from the brightness pattern in an optical sky map, based on the east–west asymmetry in its brightness and degree of polarisation. Therefore, measurement of the interplanetary polarised brightness could significantly reduce the ambiguity in performing three-dimensional reconstruction of local electron density from white-light imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Belcher, J.W., Davis, L.Jr.: 1971, Large-amplitude Alfvén waves in the interplanetary medium, 2. J. Geophys. Res. 76, 3534 – 3563.

    Article  ADS  Google Scholar 

  • Billings, D.E.: 1966, A Guide to the Solar Corona, Academic Press, San Diego.

    Google Scholar 

  • Bisi, M.M., Jackson, B.V., Breen, A.R., Dorrian, G.D., Fallows, R.A., Clover, J.M., Hick, P.P.: 2010, Three-dimensional (3-D) reconstructions of EISCAT IPS velocity data in the declining phase of solar cycle 23. Solar Phys. 265, 233 – 244.

    Article  ADS  Google Scholar 

  • Brueckner, G., Howard, R., Koomen, M., Korendyke, C., Michels, D., Moses, J., et al.: 1995, The large angle spectroscopic coronagraph (LASCO). Solar Phys. 162, 357 – 402.

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Behannon, K.W., Klein, L.W.: 1987, Compound streams, magnetic clouds, and major geomagnetic storms. J. Geophys. Res. 92, 5725 – 5734.

    Article  ADS  Google Scholar 

  • Coles, W.A., Harmon, J.K.: 1989, Propagation observations of the solar wind near the Sun. Astrophys. J. 337, 1023 – 1034.

    Article  ADS  Google Scholar 

  • Dal Lago, A., Gonzalez, W.D., Balmaceda, L.A., Vieira, L.E.A., Echer, E., Guarnieri, F.L., et al.: 2006, The 17 – 22 October (1999) solar-interplanetary-geomagnetic event: very intense geomagnetic storm associated with a pressure balance between interplanetary coronal mass ejection and a high-speed stream. J. Geophys. Res. 111, A07S14.

    Article  Google Scholar 

  • Dasso, S., Mandrini, C.H., Schmieder, B., Cremades, H., Cid, C., Cerrato, Y., et al.: 2009, Linking two consecutive nonmerging magnetic clouds with their solar sources. J. Geophys. Res. 114, A02109.

    Article  ADS  Google Scholar 

  • Davies, J.A., Harrison, R.A., Rouillard, A.P., Sheeley, N.R., Perry, C.H., Bewsher, D., et al.: 2009, A synoptic view of solar transient evolution in the inner heliosphere using the Heliospheric Imagers on STEREO. Geophys. Res. Lett. 36, L02102.

    Article  ADS  Google Scholar 

  • DeForest, C.E., Howard, T.A., Tappin, S.J.: 2011, Observations of detailed structure in the solar wind at 1 AU with STEREO/HI-2. Astrophys. J. 738, 103.

    Article  ADS  Google Scholar 

  • de Vos, M., Gunst, A.W., Nijboer, R.: 2009, The LOFAR telescope: system architecture and signal processing. IEEE Proc. 97, 1431 – 1437.

    Article  ADS  Google Scholar 

  • Dorrian, G.D., Breen, A.R., Brown, D.S., Davies, J.A., Fallows, R.A., Rouillard, A.P.: 2008, Simultaneous interplanetary scintillation and heliospheric imager observations of a coronal mass ejection. Geophys. Res. Lett. 35, L24104.

    Article  ADS  Google Scholar 

  • Dryer, M.: 1994, Interplanetary studies: propagation of disturbances between the Sun and the magnetosphere. Space Sci. Rev. 67, 363 – 419.

    Article  ADS  Google Scholar 

  • Eyles, C.J., Simnett, G.M., Cooke, M.P., Jackson, B.V., Buffington, A., Hick, P.P., et al.: 2003, The Solar Mass Ejection Imager (SMEI). Solar Phys. 217, 319 – 347.

    Article  ADS  Google Scholar 

  • Eyles, C.J., Harrison, R.A., Davis, C.J., Waltham, N.R., Shaughnessy, B.M., Mapson-Menard, H.C.A., et al.: 2009, The Heliospheric Imagers onboard the STEREO mission. Solar Phys. 254, 387 – 445.

    Article  ADS  Google Scholar 

  • Forbes, T.G., Linker, J.A., Chen, J., Cid, C., Kota, J., Lee, M.A., et al.: 2006, CME theory and models. Space Sci. Rev. 123, 251 – 302.

    Article  ADS  Google Scholar 

  • Gosling, J.T., McComas, D.J., Phillips, J.L., Bame, S.J.: 1991, Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections. J. Geophys. Res. 96, 7831 – 7839.

    Article  ADS  Google Scholar 

  • Harrison, R.A., Davis, C.J., Eyles, C.J., Bewsher, D., Crothers, S.R., Davies, J.A., et al.: 2008, First imaging of coronal mass ejections in the heliosphere viewed from outside the Sun-Earth line. Solar Phys. 247, 171 – 193.

    Article  ADS  Google Scholar 

  • Harrison, R.A., Davis, C.J., Eyles, C.J.: 2005, The STEREO heliospheric imager: how to detect CMEs in the heliosphere. Adv. Space Res. 36, 1512 – 1523.

    Article  ADS  Google Scholar 

  • Harrison, R.A., Davies, J.A., Rouillard, A.P., Davis, C.J., Eyles, C.J., Bewsher, D., et al.: 2009, Two years of the STEREO heliospheric imagers: invited review. Solar Phys. 256, 219 – 237.

    Article  ADS  Google Scholar 

  • Hewish, A., Scott, P.F., Willis, D.: 1964, Interplanetary scintillation of small diameter radio sources. Nature 203, 1214 – 1217.

    Article  ADS  Google Scholar 

  • Howard, T.A., Tappin, S.J.: 2009, Interplanetary coronal mass ejections observed in the heliosphere: 1. Review of theory. Space Sci. Rev. 147, 31 – 54.

    Article  ADS  Google Scholar 

  • Howard, T.A., Fry, C.D., Johnston, J.C., Webb, D.F.: 2007, On the evolution of coronal mass ejections in the interplanetary medium. Astrophys. J. 667, 610 – 625.

    Article  ADS  Google Scholar 

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., et al.: 2008, Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci. Rev. 136, 67 – 115.

    Article  ADS  Google Scholar 

  • Jackson, B., Buffington, A., Hick, P., Bisi, M., Clover, J.: 2010, A heliospheric imager for deep space: lessons learned from Helios, SMEI, and STEREO. Solar Phys. 265, 257 – 275.

    Article  ADS  Google Scholar 

  • Jackson, B.V., Hick, P.P., Buffington, A., Kojima, M., Tokumaru, M., Fujiki, K., et al.: 2003, Time-dependent tomography of hemispheric features using interplanetary scintillation (IPS) remote-sensing observations. In: Velli, M., Bruno, R., Malara, F., Bucci, B. (eds.) Solar Wind Ten, AIP Conference Proceedings, 679, 75 – 78.

    Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: an introduction. Space Sci. Rev. 136, 5 – 16.

    Article  ADS  Google Scholar 

  • Leinert, C., Pitz, E.: 1989, Zodiacal light observed by HELIOS throughout solar cycle No. 21 – stable dust and varying plasma. Astron. Astrophys. 210, 399 – 402.

    ADS  Google Scholar 

  • Leinert, C., Pitz, E., Link, H., Salm, N.: 1981, Calibration and in-flight performance of the zodiacal light experiment on HELIOS. Space Sci. Instr. 5, 257 – 270.

    ADS  Google Scholar 

  • Lepping, R.P., Burlaga, L.F., Szabo, A., Ogilvie, K.W., Mish, W.H., Vassiliadis, D., et al.: 1997, The Wind magnetic cloud and events of October 18 – 20, 1995: interplanetary properties and as triggers for geomagnetic activity. J. Geophys. Res. 102, 14049 – 14063.

    Article  ADS  Google Scholar 

  • Li, B., Li, X.: 2007, Propagation of non-Wentzel–Kramers–Brillouin Alfvén waves in a multi-component solar wind with differential ion flow. Astrophys. J. 661, 1222 – 1233.

    Article  ADS  Google Scholar 

  • Liu, Y., Davies, J.A., Luhmann, J.G., Vourlidas, A., Bale, S.D., Lin, R.P.: 2010, Geometric triangulation of imaging observations to track coronal mass ejections continuously out to 1 AU. Astrophys. J. 710, L82 – L87.

    Article  ADS  Google Scholar 

  • Liu, Y., Luhmann, J.G., Mostl, C., Martinez-Oliveros, J.C., Bale, S.D., Lin, R.P., et al.: 2012, Interactions between coronal mass ejections viewed in coordinated imaging and in situ observations. Astrophys. J. Lett. 746, L15.

    Article  ADS  Google Scholar 

  • Lonsdale, C.J., Cappallo, R.J., Morales, M.F., Briggs, F.H., Benkevitch, L., Bowman, J.D., et al.: 2009, The Murchison Widefield Array: design overview. IEEE Proc. 97, 1497 – 1506.

    Article  ADS  Google Scholar 

  • Lugaz, N., Vourlidas, A., Roussev, I.I., Morgan, H.: 2009, Solar-terrestrial simulation in the STEREO era: the 24 – 25 January 2007 eruptions. Solar Phys. 256, 269 – 284.

    Article  ADS  Google Scholar 

  • Lugaz, N., Hernandez-Charpak, J.N., Roussev, I.I., Davis, C.J., Vourlidas, A., Davies, J.A.: 2010, Determining the azimuthal properties of coronal mass ejections from multi-spacecraft remote-sensing observations with STEREO SECCHI. Astrophys. J. 715, 493 – 499.

    Article  ADS  Google Scholar 

  • Manoharan, P.K.: 2010, Ooty interplanetary scintillation – remote-sensing observations and analysis of coronal mass ejections in the heliosphere. Solar Phys. 265, 137 – 157.

    Article  ADS  Google Scholar 

  • Moran, T.G., Davila, J.M., Thompson, W.T.: 2010, Three-dimensional polarimetric coronal mass ejection localization tested through triangulation. Astrophys. J. 712, 453 – 458.

    Article  ADS  Google Scholar 

  • Rouillard, A.P., Davies, J.A., Forsyth, R.J., Rees, A., Davis, C.J., Harrison, R.A., et al.: 2008, First imaging of corotating interaction regions using the STEREO spacecraft. Geophys. Res. Lett. 35, L10110.

    Article  ADS  Google Scholar 

  • Sheeley, N.R., Herbst, A.D., Palatchi, C.A., Wang, Y.M., Howard, R.A., Moses, J.D., et al.: 2008, SECCHI observations of the Sun’s garden-hose density spiral. Astrophys. J. 674, 109 – 112.

    Article  ADS  Google Scholar 

  • Sime, D.G., MacQueen, R.M., Hundhausen, A.J.: 1984, Density distribution in looplike coronal transients: a comparison of observations and a theorietical model. J. Geophys. Res. 89, 2113 – 2121.

    Article  ADS  Google Scholar 

  • Tappin, S.J., Howard, T.A.: 2009, Interplanetary coronal mass ejections observed in the heliosphere: 2. Model and data comparison. Space Sci. Rev. 147, 55 – 87.

    Article  ADS  Google Scholar 

  • Wang, Y.M., Sheeley, N.R. Jr., Walters, J.H., Brueckner, G.E., Howard, R.A., Michels, D.J., et al.: 1998, Origin of streamer material in the outer corona. Astrophys. J. 498, L165 – L168.

    Article  ADS  Google Scholar 

  • Wei, F.S., Liu, R., Fan, Q., Feng, X.S.: 2003, Identification of the magnetic cloud boundary layers. J. Geophys. Res. 108, 1263.

    Article  Google Scholar 

  • Xiong, M., Zheng, H.N., Wang, Y.M., Wang, S.: 2006a, Magnetohydrodynamic simulation of the interaction between interplanetary strong shock and magnetic cloud and its consequent geoeffectiveness. J. Geophys. Res. 111, A08105.

    Article  ADS  Google Scholar 

  • Xiong, M., Zheng, H.N., Wang, Y.M., Wang, S.: 2006b, Magnetohydrodynamic simulation of the interaction between interplanetary strong shock and magnetic cloud and its consequent geoeffectiveness: 2. Oblique collision. J. Geophys. Res. 111, A11102.

    Article  ADS  Google Scholar 

  • Xiong, M., Zheng, H.N., Wu, S.T., Wang, Y.M., Wang, S.: 2007, Magnetohydrodynamic simulation of the interaction between two interplanetary magnetic clouds and its consequent geoeffectiveness. J. Geophys. Res. 112, A11103.

    Article  ADS  Google Scholar 

  • Xiong, M., Zheng, H.N., Wang, S.: 2009, Magnetohydrodynamic simulation of the interaction between two interplanetary magnetic clouds and its consequent geoeffectiveness: 2. Oblique collision. J. Geophys. Res. 114, A11101.

    Article  ADS  Google Scholar 

  • Xiong, M., Breen, A., Bisi, M., Owens, M., Fallows, R., Dorrian, G., Davies, J., Thomasson, P.: 2011, Forward modelling to determine the observational signatures of white-light imaging and interplanetary scintillation for the propagation of an interplanetary shock in the ecliptic plane. J. Atmos. Solar-Terr. Phys. 73, 1270 – 1280.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by a rolling grant from the Science & Technology Facilities Council (STFC) to the Aberystwyth University, UK. Ming Xiong was also partially supported by Research Fund for Recipient of Excellent Award of the Chinese Academy of Sciences President’s Scholarship. We thank the anonymous referee for his/her helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Xiong.

Additional information

Observations and Modelling of the Inner Heliosphere

Guest Editors: Mario M. Bisi, Richard A. Harrison, and Noé Lugaz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, M., Davies, J.A., Bisi, M.M. et al. Effects of Thomson-Scattering Geometry on White-Light Imaging of an Interplanetary Shock: Synthetic Observations from Forward Magnetohydrodynamic Modelling. Sol Phys 285, 369–389 (2013). https://doi.org/10.1007/s11207-012-0047-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-012-0047-0

Keywords

Navigation