Skip to main content
Log in

Knowledge production and the structure of collaboration networks in two scientific fields

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

In this paper the relationship between knowledge production and the structure of research networks in two scientific fields is assessed. We investigate whether knowledge production corresponds positively or negatively with different types of social network structure. We show that academic fields generate knowledge in different ways and that within the fields, different types of networks act as a stimulant for knowledge generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. We are aware and indeed have highlighted the fact in previous publications, that knowledge generation is not the only task of researchers. Rather, research output is multidimensional and research groups do specialize in different outputs dimensions such as education of new scientists or the maintaining of research infrastructure (Jansen et al. 2007, Schmoch et al. 2009). However, in this paper we concentrate only on the production of new knowledge as one of the core tasks of science because the relationship between knowledge production and network structure has in the past been made repeatedly.

  2. The key-word based search strategy was developed by the Fraunhofer Institute for Systems and Innovation Research ISI. The authors would especially like to thank Ulrich Schmoch and Torben Schubert for collating and providing the relevant data.

  3. A more detailed description of this qualitative way of gathering ego-centred network data is given in Franke and Wald (2006).

  4. Compare http://www.nano.gov/html/facts/whatIsNano.html (as at July 10, 2008).

  5. A key-word based search strategy to identify articles from a field is more precise than a strategy based on the SCI subject categories because journals are assigned to one or more subject categories without discerning for discrete articles. The subject categorisation in the SSCI (which is comparable to the SCI) is discussed in further detail in Glänzel et al. (1999).

  6. The clustering coefficient was introduced by Watts and Strogatz (1998) and can be written as follows:

    $$ Clustering\,Coefficient\,\left( C \right) = {\frac{3\; \times \,Number\,of\,Triangles\,on\,the\,Graph}{Number\,of\,connected\,Triples\,of\,Vertices}} $$

    where a “triangle” is a group of three authors, each of whom is connected to both of the others, and a ‘‘connected triple’’ is a single author connected to two others.

  7. Newman (2001) establishes this for the field of “physics of the condensed matter”, one of the sub-disciplines of nanoscience (compare Fig. 4).

  8. Usually the constraint measure is thought to vary between zero and one, but depending on the size of the network the lower border of the constraint measure will be higher than zero. This is the reason, why the constraint value is higher than zero in our exemplary network B, although there are no crosslinks between the 12 alteri.

  9. We also collected bibliometric data on the number of SCI publications of the research groups between 2004 and 2006 but these data were only available for 49 research groups polled in 2006/07. There is a significant positive correlation between the number of SCI publications and the number of international conference papers of a research group collected by a standardized questionnaire on input and output structure of the research groups (r =0.373**). To allow for a bigger sample size we decided to use the output of international conference papers as the measurement of scientific performance.

  10. The output indicator “number of international conference papers” is a count-variable; therefore only count-data regression models should be applied. First a Poisson-Model was fitted and a test for overdispersion was applied. This test rejected the Poisson-Model on a 0-percent level. A Negative Binomial Model was then computed because the overdispersion-parameters are too high with 0.752 for astrophysics and 0.752 for nanoscience. The dispersion-parameter describes the heteroscedasticity of the model. If the variance is not growing proportional to the expected value of the function, a Negative Binomial Model should be applied, otherwise the significance of the parameters could be overestimated (Hilbe 2007).

    We also performed a standard OLS-Regression where we logarithmised the dependent variable “number of international conference papers”. The direction of the effect of network constraint in the two fields is the same as in the Neg-Bin Model; it is significant at the 10%-level for astrophysics and at the 1%-level for nanoscience.

References

  • Ahuja, G. (2000). Collaboration networks, structural holes, and innovation: A longitudinal study. Administrative Science Quarterly, 45(3), 425–455.

    Article  MathSciNet  Google Scholar 

  • Bachmann, G. (1998). Innovationsschub aus dem Nanokosmos. Technologieanalyse. VDI-Technologiezentrum, Düsseldorf.

  • Beaver, D. B., & Rosen, R. (1978). Studies in scientific collaboration. Part 1: The professional origins of scientific co-authorship. Scientometrics, 1(1), 65–84.

    Article  Google Scholar 

  • Blau, P. M. (1977). Inequality and heterogeneity. New York: Free Press.

    Google Scholar 

  • Bonaccorsi, A. (2007). Explaining poor performance of European science: Institutions versus policies. Science and Public Policy, 34(5), 303–316.

    Article  Google Scholar 

  • Bonaccorsi, A. (2008). Search regimes and the industrial dynamics of science. Minerva, 46(3), 285–315.

    Article  MathSciNet  Google Scholar 

  • Bonaccorsi, A., & Vargas, J. S. (2007). Proliferation dynamics in emerging sciences. Paper presented at the Conference “Science and its publics”, Munich, 24–25 June 2007. Under review. Retrieved July 14, 2008, from http://www.oecd.org/dataoecd/25/42/40050880.pdf.

  • Braun, T., Schubert, A., & Zsindely, S. (1997). Nanoscience and nanotechnology on the balance. Scientometrics, 38(2), 321–325.

    Article  Google Scholar 

  • Bundesministerium für Bildung und Forschung (BMBF). (2004). Nanotechnologie erobert Märkte. Deutsche Zukunftsoffensive für Nanotechnologie, Bonn/Berlin.

  • Burt, R. S. (1992). Structural holes. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Burt, R. S. (2004). Structural holes and good ideas. American Journal of Sociology, 110(2), 349–399.

    Article  Google Scholar 

  • Burt, R. S. (2008). Information and structural holes: Comment on Reagans and Zuckerman. Industrial and Corporate Change, 17(5), 953–970.

    Article  Google Scholar 

  • Cohen, W. M., & Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative Science Quarterly, 35, 128–152.

    Article  Google Scholar 

  • Coleman, J. S. (1988). Social capital in the creation of human capital. American Journal of Sociology, 94(Supplement), 95–120.

    Google Scholar 

  • De Solla Price, D. (1963). Little science, big science. New York: Columbia University Press.

    Google Scholar 

  • EU. (2004). EU policy for Nanosciences and nanotechnologies.

  • Fernandez, J. A. (1998). The transition from an individual science to a collective one: The case of astronomy. Scientometrics, 42, 61–74.

    Article  Google Scholar 

  • Feynman, R. (1959). There’s plenty of room at the bottom: An invitation to enter a new field of physics. In Talk at the 1959 meeting of the American Physical Society at California Institute of Technology on December 29, 1959.

  • Franke, K., & Wald, A. (2006). Möglichkeiten der Triangulation quantitativer und qualitativer Methoden in der Netzwerkanalyse. In B. Hollstein & F. Straus (Eds.), Qualitative Netzwerkanalyse. Konzepte, Methoden, Anwendungen (pp. 153–176). Wiesbaden: VS Verlag.

  • Franke, K., Wald, A., & Bartl, K. (2006). Die Wirkung von Reformen im deutschen Forschungssystem. Eine Studie in den Feldern Astrophysik, Nanotechnologie und Mikroökonomie, Speyer Forschungsberichte Nr. 245, Speyer.

  • Gibbons, M., Limoges, C., Nowotny, H., Schwartzmann, S., Scott, P., & Trow, M. (1994). The new production of knowledge. The dynamics of science and research in contemporary societies. London: Sage.

    Google Scholar 

  • Glänzel, W., Schubert, A., Schoepflin, U., & Czerwon, H.-J. (1999). An item-by-item subject classification of papers published in journals covered by the SSCI database using reference analysis. Scientometrics, 46, 431–441.

    Article  Google Scholar 

  • Grabher, G. (1993). The weakness of strong ties: The lock-in of regional development in the Ruhr Area. In G. Grabher (Ed.), The embedded firm. On the socio-economics of industrial networks. London: Routledge.

    Google Scholar 

  • Granovetter, M. (1973). The strength of weak ties. American Journal of Sociology, 78, 1360–1380.

    Article  Google Scholar 

  • Heidenreich, M. (2000). Regionale Netzwerke in der globalen Wissensgesellschaft. In J. Weyer (Ed.), Soziale Netzwerke. Konzepte und Methoden der sozialwissenschaftlichen Netzwerkforschung (pp. 87–110). München und Wien: Oldenbourg.

    Google Scholar 

  • Heinze, T. (2009). Nanoscience and technology. In D. Jansen (Ed.), Governance and performance in the German public research sector. Disciplinary differences. Dordrecht: Springer (forthcoming).

  • Heinze, T., & Bauer, G. (2007). Characterizing creative scientists in nano-S&T: Productivity, multidisciplinarity, and network brokerage in a longitudinal perspective. Scientometrics, 70(3), 811–830.

    Article  Google Scholar 

  • Hessels, L. K., & van Lente, H. (2008). Re-thinking new knowledge production: A literature review and a research agenda. Research Policy, 37(4), 740–760.

    Article  Google Scholar 

  • Hilbe, J. M. (2007). Negative binomial regression. Cambridge: University Press.

    MATH  Google Scholar 

  • Jacob, M. (2001). Managing the institutionalisation of mode 2 knowledge production. Science Studies, 14(2), 83–100.

    Google Scholar 

  • Jansen, D. (1996). Nationale Innovationssysteme, soziales Kapital und Innovationsstrategien von Unternehmen. Soziale Welt, 45, 411–434.

    Google Scholar 

  • Jansen, D. (2002). Netzwerkansätze in der Organisationsforschung. In J. Allmendinger & T. Hinz (Eds.), Organisationssoziologie (pp. 88–118) Sonderband 42 der Kölner Zeitschrift für Soziologie und Sozialpsychologie.

  • Jansen, D. (2004). Networks, Social Capital and Knowledge Production, Forschungsinstitut für öffentliche Verwaltung, Discussion Papers No. 8, Speyer.

  • Jansen, D., von Görtz, R., & Heidler, R. (2009). Is nanoscience a mode-2 field? Disciplinary differences in modes of knowledge production and the influence of science policy on these differences. In D. Jansen (Ed.), Governance and performance in the German public research sector. Disciplinary differences. Dordrecht: Springer (forthcoming).

  • Jansen, D., Wald, A., Franke, K., Schmoch, U., & Schubert, T. (2007). Drittmittel als Performanzindikator der wissenschaftlichen Forschung. Zum Einfluss von Rahmenbedingungen auf Forschungsleistung. Kölner Zeitschrift für Soziologie und Sozialpsychologie, 59(1), 125–149.

    Article  Google Scholar 

  • Kearnes, M. B., & Macnaghten, P. M. (2006). (Re)Imaging nanotechnology. Science as Culture, 15(4), 279–290.

    Article  Google Scholar 

  • Kuhn, T. S. (1957). The Copernican revolution. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Kuhn, T. S. (1970, first edition 1962). The structure of scientific revolutions, 2nd edn enl., Chicago: University of Chicago Press.

  • Leung, R. (2007). Network position, research funding, and interdisciplinary collaboration among nanotechnology scientists: An application of social network analysis. Solid State Phenomena, 121–123, 1347–1350.

    Article  Google Scholar 

  • Leydesdorff, L., & Rafols, I. (2009). A global map of science based on the ISI subject categories. Journal of the American Society for Information Science and Technology, 60(2), 348–362.

    Article  Google Scholar 

  • Mayntz, R. (1992). Modernisierung und die Logik von interorganisatorischen Netzwerken. Journal für Sozialforschung, 32, 19–32.

    Google Scholar 

  • McCray, W. P. (2000). Large telescopes and the moral economy of recent astronomy. Social Studies of Science, 30(5), 685–711.

    Article  Google Scholar 

  • Meyer, M. (2005). Between technology and science. Exploring an emerging field. Knowledge flows and Networking on the Nano-scale. Florida: Dissertation.com.

  • Mody, C. (2004). How probe microscopists became nanotechnologists. In D. Baird, A. Nordmann, & J. Schummer (Eds.), Discovering the nanoscale (pp. 119–133). Amsterdam: IOS Press.

    Google Scholar 

  • Newman, M. E. J. (2001). Scientific collaboration networks. I. Network construction and fundamental results, Physical Review E, 64, 1–8.

    Google Scholar 

  • Polanyi, M. (1985). Implizites Wissen. Frankfurt am Main: Suhrkamp.

  • Powell, W. (1990). Neither market nor hierarchy: Network forms of organization. Research in organizational behavior, 12, 295–336.

    MathSciNet  Google Scholar 

  • Reagans, R., & Zuckerman, E. (2008). Why knowledge does not equal power: The network redundancy trade-off. Industrial and Corporate Change, 17(5), 903–944.

    Article  Google Scholar 

  • Roco, M., & Bainbridge, W. (Eds.). (2002). Converging technologies for improving human performance. Arlington, Virginia: National Science Foundation.

  • Schmoch, U., Schubert, T., Jansen, D., Heidler, R., & von Görtz, R. (2009). How to use indicators to measure scientific performance? A balanced approach. To be published in Research Evaluation.

  • Schummer, J. (2004). Multidisciplinarity, interdisciplinarity, and patterns of research collaboration in nanoscience and nanotechnology. Scientometrics, 59(3), 425–465.

    Article  Google Scholar 

  • Wald, A., Franke, K., & Jansen, D. (2007). Governance reforms and scientific production. Evidence from German astrophysics. In D. Jansen (Ed.), New forms of governance in research organizations. Disciplinary approaches, interfaces and integration (pp. 213–232). Dordrecht: Springer.

    Google Scholar 

  • Walker, G., Kogut, B., & Shan, W. (1997). Social capital, structural holes and the formation of an industry network. Organization Science, 8(2), 109–125.

    Article  Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature, 393, 440–442.

    Article  Google Scholar 

  • Werle, R. (1990). Telekommunikation in der Bundesrepublik: Expansion, Differenzierung, Transformation. Schriften des Max-Planck-Instituts für Gesellschaftsforschung Köln, Bd. 6. Campus, Frankfurt a. M.

  • Weyer, J. (2000). Zum Stand der Netzwerkforschung in den Sozialwissenschaften. In J. Weyer (Ed.), Soziale Netzwerke. Konzepte und Methoden der sozialwissenschaftlichen Netzwerkforschung (pp. 1–34). München und Wien: Oldenbourg.

    Google Scholar 

  • Whitley, R. (2000, first edition 1984). The intellectual and social organisation of the sciences, 2nd edn. Oxford: Oxford University Press.

  • Yayavaram, S., & Ahuja, G. (2008). Decomposability in knowledge structures and its impact on the usefulness of inventions and knowledge base malleability. Administrative Science Quarterly, 53, 333–362.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding by the German Research Foundation (Ja 548/5-1, Ja 548/5-2, Ja 548/5-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothea Jansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansen, D., von Görtz, R. & Heidler, R. Knowledge production and the structure of collaboration networks in two scientific fields. Scientometrics 83, 219–241 (2010). https://doi.org/10.1007/s11192-009-0022-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-009-0022-1

Keywords

Navigation