Skip to main content
Log in

Synthesis and 1-butene hydrogenation activity of platinum decorated bamboo-shaped multiwall carbon nanotubes

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Bamboo-shaped carbon nanotubes (BCNT) were prepared from three different amines on supported iron (Fe) and nickel (Ni) catalysts by catalytic chemical vapor deposition. The main factors governing product morphology and defect site density were identified. Post-synthetic oxidative functionalization was used to add carboxyl groups to the nanotubes, and then platinum (Pt) nanoparticles were deposited on the surface by the in situ reduction of a platinum salt. The average Pt nanoparticle diameter was found to be affected by the extent of surface functionalization. The catalytic performance of the synthesized Pt/BCNT samples were examined in the hydrogenation of 1-butene, in order to show that the catalytic activity of the bamboo like carbon nanotube supported Pt catalyst is similar to the conventional Pt catalysts in heterogeneous catalytic hydrogenation. The best overall performance was achieved when the bamboo-shaped nanotube support was synthesized on 5 wt% Fe/Al(OH)3 catalyst from triethylamine and decorated with 5 wt% platinum nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yu Z, Fareid LE, Moljord K, Blekkan EA, Walmsley JC, Chen D (2008) Appl Catal B 84:482–489

    Article  CAS  Google Scholar 

  2. Zhang Y, Zhang HB, Lin GD, Chen P, Yuan YZ, Tsai KR (1999) Appl Catal A 187:213–224

    Article  CAS  Google Scholar 

  3. Bahome MC, Jewell LL, Hildebrandt D, Glasser D, Coville NJ (2005) Appl Catal A 287:60–67

    Article  CAS  Google Scholar 

  4. Ovejero G, Sotelo JL, Rodriguez A, Diaz C, Sanz R, Garcia J (2007) Ind Eng Chem Res 46:6449–6455

    Article  CAS  Google Scholar 

  5. Chen WY, Ji J, Feng X, Duan XZ, Qian G, Li P, Zhou XG, Chen D, Yuan WK (2014) J Am Chem Soc 136:16736–16739

    Article  CAS  Google Scholar 

  6. Chambers A, Nemes T, Rodriguez NM, Baker RTK (1998) J Phys Chem B 102:2251–2258

    Article  CAS  Google Scholar 

  7. Serp P, Corrias M, Kalck P (2003) Appl Catal A253:337–358

    Article  Google Scholar 

  8. Pham-Huu C, Kelle N, Ehre G, Charbonniere LJ, Ziessel R, Ledoux MJ (2001) J Mol Catal A 170:155–163

    Article  CAS  Google Scholar 

  9. Onoe T, Iwamoto S, Inoue M (2007) Catal Commun 8:701–706

    Article  CAS  Google Scholar 

  10. Liao HG, Xiao YJ, Zhang HK, Liu PL, You KY, Luo H, Wei C (2012) Catal Commun 19:80–84

    Article  CAS  Google Scholar 

  11. Pereira MFR, Figueiredo JL, Oerfaó JJM, Serp P, Kalck P, Kihn Y (2004) Carbon 42:2807–2813

    Article  CAS  Google Scholar 

  12. Liu X, Su DS, Schlogl R (2008) Carbon 46:544–561

    Article  Google Scholar 

  13. Liu H, Zhang Y, Li R, Sun X, Desilets S, Abou-Rachid H, Jaidann M, Lussier LS (2010) Carbon 48:1498–1507

    Article  CAS  Google Scholar 

  14. Gan L, Lv L, Du H, Li B, Kang F (2009) Carbon 47:1833–1840

    Article  CAS  Google Scholar 

  15. Kumar M, Ando Y (2010) J Nanosci Nanotechnol 10:3739–3758

    Article  CAS  Google Scholar 

  16. Joseyacaman M, Mikiyoshida M, Rendon L, Santiesteban JG (1993) Appl Phys Lett 62:657–659

    Article  CAS  Google Scholar 

  17. Endo M, Takeuchi K, Kobori K, Takahashi K, Kroto HW, Sarkar A (1995) Carbon 33:873–881

    Article  CAS  Google Scholar 

  18. KovalevskiV SafronovAN (1998) Carbon 36:963–968

    Article  Google Scholar 

  19. Mayne M, Grobert N, Terrones M, Kamalakaran R, Rühle M, Kroto HW, Walton DRM (2001) Chem Phys Lett 338:101–107

    Article  CAS  Google Scholar 

  20. Reyes M, Grobert N, Kamalakaran R, Seeger T, Golberg D, Rühle M, Bando Y, Terrones H (2004) Chem Phys Lett 396:167–173

    Article  Google Scholar 

  21. Collins PG (2009) In: Narlikar AV, Fu YY (eds) Defects and disorder in carbon nanotubes in Oxford handbook of nanoscience and technology: frontiers and advances. Oxford University Press, Oxford

    Google Scholar 

  22. Dresselhaus MS, Dresselhaus G, Saito G, Jorio A (2005) Phys Rep 409:47–99

    Article  Google Scholar 

  23. Hussain S, Jha P, Chouksey A, Raman R, Islam SS, Islam T, Choudhary PK (2011) J Mod Phys 2:538–543

    Article  CAS  Google Scholar 

  24. Skákalová V, Kaiser AB, Dettlaff-Weglikowska U, Hrncariková K, Roth S (2005) J Phys Chem B 109:7174–7181

    Article  Google Scholar 

  25. Singh C, Shaffer MSP, Windle AH (2003) Carbon 41:359–368

    Article  CAS  Google Scholar 

  26. Reddy ALM, Ramaprabhu SR (2007) Int J Hydrog Energy 32:3998–4004

    Article  CAS  Google Scholar 

  27. Osorio AG, Silveira ICL, Bueno VL, Bergmann CP (2008) Appl Surf Sci 30:2485–2489

    Article  Google Scholar 

  28. Men XH, Zhang ZZ, Song HJ, Wang K, Jiang W (2008) Compos Sci Technol 68:1042–1049

    Article  CAS  Google Scholar 

  29. Shen J, Huang W, Wu L, Hu Y, Ye M (2007) Mat Sci Eng A 46:151–156

    Article  Google Scholar 

  30. Kitano H, Tachimoto K, Anraku Y (2007) J Colloid Interface Sci 306:28–33

    Article  CAS  Google Scholar 

  31. Fearon J, Watson GW (2006) J Mater Chem 16:1989–1996

    Article  CAS  Google Scholar 

  32. Davis SM, Zaera F, Somorjai GA (1984) J Catal 85:206–223

    Article  CAS  Google Scholar 

  33. Campbell CT, Sun YK, Weinberg WH (1991) Chem Phys Lett 179:53–57

    Article  CAS  Google Scholar 

  34. McCrea KR, Somorjai GA (2000) J Mol Catal A 16:43–53

    Article  Google Scholar 

  35. Bratlie KM, Flores LD, Somorjai GA (2005) Surf Sci 599:93–106

    Article  CAS  Google Scholar 

  36. Bratlie KM, Somorjai GA (2007) J Phys Chem C 111:6837–6845

    Article  CAS  Google Scholar 

  37. Valden M, Lai X, Goodman DW (1998) Science 281:1647–1650

    Article  CAS  Google Scholar 

  38. Solhy A, Machado BF, Beausolei J, Kihn Y, Gonçalves F, Pereira MFR, Órfão JJM, Figueiredo JL, Faria JL, Serp P (2008) Carbon 46:1194–1207

    Article  CAS  Google Scholar 

  39. Li W, Liang C, Zhou W, Qiu J, Zhou Z, Sun G, Xin Q (2003) J Phys Chem B 107:6292–6299

    Article  CAS  Google Scholar 

  40. Wang CH, Du HY, Hsu HC, Chang ST, Huang HC, Chen LC, Chen KH (2012) Int J Hydrog Energy 37:10663–10670

    Article  CAS  Google Scholar 

  41. Shao Y, Kou R, Wang J, Wang CM, Vishwanathan VV, Liu J, Wang Y, Lin Y (2009) J Nanosci Nanotechnol 9:5811–5815

    Article  CAS  Google Scholar 

  42. Pillai SK, Ray SS, Moodley M (2008) J Nanosci Nanotechnol 8:6187–6207

    Article  CAS  Google Scholar 

  43. Kukovecz A, Konya Z, Nagaraju N, Willems I, Tamasi A, Fonseca A, Nagy JB, Kiricsi I (2000) Phys Chem Chem Phys 2:3071–3076

    Article  CAS  Google Scholar 

  44. Szabó A, Méhn D, Kónya Z, Fonseca A, Nagy JB (2003) Phys Chem Comm 6:40–41

    Google Scholar 

  45. Nagy JB, Bister G, Fonseca A, Méhn D, Kónya Z, Kiricsi I, Horváth ZE, Biró LP (2004) J Nanosci Nanotechnol 4:326–345

    Article  CAS  Google Scholar 

  46. Vanyorek L, Meszaros R, Barany S (2014) Colloids Surf A 448:140–146

    Article  CAS  Google Scholar 

  47. Lear T, Marshall R, Sanchez AL, Jackson D, Klapötke TM, Bäumer M, Rupprechter G, Freund H, Lennon D (2005) J Chem Phys 123:174706

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially carried out in the framework of the Center of Applied Materials Science and Nano-Technology at the University of Miskolc. The financial support of the OTKA NN 110676 and OTKA K 112531 Projects is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Vanyorek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5768 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanyorek, L., Kristály, F., Mihalkó, A. et al. Synthesis and 1-butene hydrogenation activity of platinum decorated bamboo-shaped multiwall carbon nanotubes. Reac Kinet Mech Cat 116, 371–383 (2015). https://doi.org/10.1007/s11144-015-0906-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-015-0906-4

Keywords

Navigation