Skip to main content
Log in

Equilibrium and dissociation kinetics of the [Al(NOTA)] complex (NOTA = 1,4,7-triazacyclononane-1,4,7-triacetate)

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A detailed investigation of the equilibria and dissociation kinetics for the [Al(NOTA)] complex has been carried out. This complex and its derivatives are known as very good carriers for 18F-isotope in positron emission tomography. The thermodynamic stability of [Al(NOTA)] has been studied by “out of cell” pH-potentiometric technique since the formation rate of the complex is very low in acidic medium. 1H- and 27Al-NMR spectra have been recorded to check the time course of equilibration and to validate the equilibrium model consisting of [Al(NOTA)] with lgK = 17.9(1) and [Al(HNOTA)]+ with lgK H = 1.9(3). A metastable mixed hydroxido complex [Al(NOTA)(OH)] with lgK OHAl(NOTA)  = −12.2(1) was detected in alkaline solution by direct pH-potentiometry, which transforms slowly to [Al(OH)4]. The decomplexation reactions of [Al(NOTA)] have been investigated in both acidic and basic conditions. The rate of dissociation is extremely low in acidic medium, while in alkaline solution, it can be characterized by the rate law kobs = k 0 + k 1[OH], where k 0 = (2.0 ± 0.1) × 10−6 s−1 and k 1 = (6.8 ± 0.5) × 10−6 M−1s−1. The formation of the ternary [Al(NOTA)(F)] complex via direct reaction of [Al(NOTA)] and F cannot be detected by either fluoride selective electrode or by 19F-NMR spectroscopy. However, by applying solvent mixture (1:1 ethanol:water) and heating, the ternary [Al(NOTA)(F)] complex was found to form quantitatively within 15 minutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Merbach AE, Helm L, Tóth É (eds) (2013) The chemistry of contrast agents in medical magnetic resonance imaging, 2nd edn. Wiley, New York

    Google Scholar 

  2. Clarke ET, Martell AE (1991) Inorg Chim Acta 181:273–328

    Article  CAS  Google Scholar 

  3. D’Souza CA, McBride WJ, Sharkey RM, Todaro LJ, Goldenberg DM (2011) Bioconjugate Chem 22:1793–1803

    Article  Google Scholar 

  4. Pan D, Yan Y, Yang R, Xu YP, Chen F, Wang L, Luo S, Yang M (2014) Contrast Media Mol Imaging 9:342–348

    Article  CAS  Google Scholar 

  5. Dijkgraaf I, Terry SYA, McBride WJ, Goldenberg DM, Laverman P, Franssen GM, Oyen WJG, Boerman OC (2013) Contrast Media Mol Imaging 8:238–245

    Article  CAS  Google Scholar 

  6. Kang J, Jo JH (2003) Bull Korean Chem Soc 24:1403–1406

    Article  CAS  Google Scholar 

  7. Maheshwari V, Dearlin JLJ, Treves ST, Packard AB (2012) Inorg Chim Acta 393:318–323

    Article  CAS  Google Scholar 

  8. Sajó I (1962) Komplexometria. Műszaki Könyvkiadó, Budapest p 118

    Google Scholar 

  9. Irving HM, Miles MG, Pettit L (1967) Anal Chim Acta 38:475–488

    Article  CAS  Google Scholar 

  10. Zékány L, Nagypál I (1985) In: Legett DJ, (ed) Computational method for determination of formation constants. Plenum New York p 291

  11. Akinori J, Takashi K, Yuichi T, Shigeaki K (1990) Analytical Sciences 6:629–630

  12. Brücher E, Cortes S, Chavez F, Sherry AD (1991) Inorg Chem 30:2092–2097

  13. Försterová M, Svobodová I, Lubal P, Táborský P, Kotek J, Hermann P, Lukeš I (2007) Dalton Trans 535–549

  14. Regueiro-Figueroa M, Bensenane B, Ruscsák E, Esteban-Gómez D, Charbonnière L J, Tircsó Gy, Tóth I, de Blas A, Rodríguez-Blas T, Platas-Iglesias C (2011) Inorg Chem 50:4125–4141

  15. André JP, Brücher E, Király R, Carvalho RA, Mäcke H, Geraldes CFGC (2005) Helv Chim Acta 88:633–646

  16. Schwarzenbach G, Gut R, Anderegg G (1954) Helv Chim Acta 37:937–957

  17. Jószai R, Purgel M, Pápai I, Wakita H, Tóth I (2007) J Mol Liquids 131–132:72–80

    Article  Google Scholar 

  18. Baranyai Z, Pálinkás Z, Uggeri F, Maiocchi A, Aime S, Brücher E (2012) Chem Eur J 18:16426–16435

    Article  CAS  Google Scholar 

  19. Laverman P, McBride WJ, Sharkey RM, Eek A, Joosten L, Oyen WJG, Goldenberg DM, Boerman OC (2010) J Nucl Med 51:454–461

    Article  CAS  Google Scholar 

  20. Nemes J, Tóth I, Zékány L (1998) J Chem Soc Dalton Trans 2707-2713

  21. Bodor A, Tóth I, Bányai I, Szabó Z, Hefter CT (2000) Inorg Chem 39:530–2537

    Article  Google Scholar 

  22. Rorabacher DB, MacKellar WJ, Shu FR, Sister MB (1971) Anal Chem 43:561–573

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Hungarian Scientific Research Fund (Grants OTKA K-84291 and K-109029) for providing financial support. The research was supported by the EU and cofinanced by the European Social Fund under the project ENVIKUT (TÁMOP-4.2.2.A-11/1/KONV-2012-0043). Special thanks to Professor Ernő Brücher for revising the manuscript before submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferenc K. Kálmán.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 95 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farkas, E., Fodor, T., Kálmán, F.K. et al. Equilibrium and dissociation kinetics of the [Al(NOTA)] complex (NOTA = 1,4,7-triazacyclononane-1,4,7-triacetate). Reac Kinet Mech Cat 116, 19–33 (2015). https://doi.org/10.1007/s11144-015-0892-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-015-0892-6

Keywords

Navigation