Skip to main content
Log in

On a class of functions that satisfies explicit formulae involving the Möbius function

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

A class of functions that satisfies intriguing explicit formulae of Ramanujan and Titchmarsh involving the zeros of an \(L\)-function in the reduced Selberg class of degree one and its associated Möbius function is studied. Moreover, a sufficient and necessary condition for the truth of the Riemann hypothesis due to Riesz is generalized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Two functions \(f(x)\) and \(g(x)\) are cosine reciprocal if

    $$\begin{aligned} \frac{{\sqrt{\pi }}}{2}f(x) = \int \limits _0^\infty {g(u)\cos (2ux){ d}u} ,\quad \frac{{\sqrt{\pi }}}{2}g(x) = \int \limits _0^\infty {f(u)\cos (2ux){ d}u}. \end{aligned}$$

References

  1. Ahlgren, S., Berndt, B.C., Yee, A.J., Zaharescu, A.: Integrals of Eisenstein series and derivatives of \(L\)-functions. Int. Math. Res. Not. 2004, 303–307 (2004)

    Article  Google Scholar 

  2. Balasubramanian, R., Ramachandra, K.: On the frequency of Titchmarsh’s phenomenon for \(\zeta (s)\) III. Proc. Indian Acad. Sci. 86A, 341–351 (1977)

    MathSciNet  Google Scholar 

  3. Bartz, K.M.: On some complex explicit formulae connected with the Möbius function I. Acta Arith. 57, 283–293 (1991)

    MATH  MathSciNet  Google Scholar 

  4. Bartz, K.M.: On some complex explicit formulae connected with the Möbius function II. Acta Arith. 57, 295–305 (1991)

    MATH  MathSciNet  Google Scholar 

  5. Berndt, B.C.: Identities involving coefficients of a class of Dirichlet series V. Trans. Am. Math. Soc. 160, 139–156 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  6. Best, D.G., Trudigan, T.S.: Linear Relations of Zeroes of the Zeta-Function. arXiv:1209.3843 (2012)

  7. Chua, K.S.: Real zeros of Dedekind zeta functions of real quadratic fields. Math. Comput. 74, 1457–1470 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Conrey, J.B., Ghosh, A.: On the Selberg class of Dirichlet series: small degrees. Duke Math. J. 72, 673–693 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Davenport, H.: Multiplicative Number Theory. Markham, Chicago (1967)

    MATH  Google Scholar 

  10. de Brujin, N.G.: Asymptotic Methods in Analysis. Springer, Berlin (1925)

    Google Scholar 

  11. Dixit, A.: Character analogues of Ramanujan type integrals involving the Riemann \(\Xi \)-function. Pac. J. Math. 255(2), 317–348 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dixit, A.: Analogues of the general theta transformation formula. Proc. R. Soc. Edinb. 143A, 371–399 (2013)

    Article  MathSciNet  Google Scholar 

  13. Dixit, A., Roy, A., Zaharescu, A.: Riesz-type criteria and theta transformation analogues, submitted (2013)

  14. Dixit, A., Roy, A., Zaharescu, A.: Ramanujan–Hardy–Littlewood–Riesz phenomena for Hecke forms, submitted (2013)

  15. Edwards, H.M.: Riemann’s Zeta Function. Academic Press, Waltham (1974)

    MATH  Google Scholar 

  16. Ferrar, W.L.: Summation formulae and their relation to Dirichlet series. Compos. Math. 1, 344–360 (1935)

    MATH  MathSciNet  Google Scholar 

  17. Ferrar, W.L.: Summation formulae and their relation to Dirichlet series II. Compos. Math. 4, 394–405 (1937)

    MathSciNet  Google Scholar 

  18. Hardy, G.H., Littlewood, J.E.: Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes. Acta Math. 41, 119–186 (1918)

    Article  MathSciNet  Google Scholar 

  19. Hardy, G.H., Titchmarsh, E.C.: Self-reciprocal functions. Q. J. Math. 2(1), 298–309 (1931)

    Google Scholar 

  20. Ingham, A.E.: The Distribution of Prime Numbers. Stechert–Hafner Service Agency, New York (1964)

    Google Scholar 

  21. Ivić, A.: The Theory of the Riemann Zeta-Function with Applications. Wiley, New York (1985)

  22. Iwaniec, H., Kowalski, E.: Analytic Number Theory, vol. 53. American Mathematical Society Colloquium Publications, Providence (2004)

    MATH  Google Scholar 

  23. Kaczorowski, J., Perelli, A.: On the structure of the Selberg class I: \(0 {\le } d {\le } 1\). Acta Math. 182, 207–241 (1999)

  24. Kaczorowski, J., Perelli, A.: On the structure of the Selberg class V: 1 \(<\) d \(<\) 5/3. Invent. Math. 150, 485–516 (2002)

  25. Kaczorowski, J., Perelli, A.: On the structure of the Selberg class VII: 1 \(<\) d \(<\) 2. Ann. Math. 173, 1397–1441 (2011)

  26. Katz, N.M., Sarnak, P.: Zeros of zeta functions and symmetry. Bull. Amer. Math. Soc. 36(1), 1–26 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Katz, N.M., Sarnak, P.: Frobenius Eigenvalues, and Monodromy, vol. 45. American Mathematical Society Colloquium Publications, Providence (1999)

    MATH  Google Scholar 

  28. Kühn, P., Robles, N.: Explicit formulas of a generalized Ramanujan sum, submitted (2014)

  29. Lamzouri, Y.: On the distribution of extreme values of zeta and \(L\)-functions in the strip \(1/2 < \sigma < 1\). Int. Math. Res. Not. 23, 5449–5503 (2011)

  30. Littlewood, J.E.: Quelques conséquences de l’hypothèse que la fonction \(\zeta (s)\) de Riemann n’a pas de zéros dans le demi-plan \(\operatorname{Re}(s) {\>} \tfrac{1}{2}\). Comptes Rendus, Séance du 29 Janvier (1912)

  31. Mitra, S.C.: On parabolic cylinder functions which are self-reciprocal in the Hankel-transform. Math. Z. 43(1), 205–211 (1938)

    Article  MathSciNet  Google Scholar 

  32. Montgomery, H.L.: The pair correlation of zeros of the zeta function. Analytic Number Theory (St. Louis, MO, 1972). In:Proceedings of Symposia in Pure Mathematics vol. 24, pp. 181–193. AMS, Providence (1973)

  33. Montgomery, H.L.: Extreme values of the Riemann zeta-function. Comment. Math. Helv. 52, 511–518 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  34. Murty, M.R., Perelli, A.: The pair correlation of zeros of functions in the Selberg class. Int. Math. Res. Not. 10, 531–545 (1999)

    Article  MathSciNet  Google Scholar 

  35. Murty, M.R., Zaharescu, A.: Explicit formulas for the pair correlation of zeros of functions in the Selberg class. Forum Math. 14, 65–83 (2002)

    MATH  MathSciNet  Google Scholar 

  36. Oberhettinger, F.: Tables of Mellin Transforms. Springer-Verlag, Berlin (1974)

    Book  MATH  Google Scholar 

  37. Odlyzko, A.M., te Riele, H.J.J.: Disproof of the Mertens conjecture. J. für die reine und angewandte Math. 357, 138–160 (1985)

    MATH  Google Scholar 

  38. Phillips, E.G.: On a function which is self-reciprocal in the Hankel transform. In: Proceedings of the Edinburgh Mathematical Society (Series 2), Vol. 5(01), pp. 35–36 (1936)

  39. Ramachandra, K.: On the frequency of Titchmarsh’s phenomenon for \(\zeta (s)\). J. Lond. Math. Soc. 8(2), 683–690 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  40. Ramachandra, K.: On the frequency of Titchmarsh’s phenomenon for \(\zeta (s)\) II. Acta Math. Sci. Hung. 30, 7–13 (1977)

    Article  MathSciNet  Google Scholar 

  41. Riesz, M.: On the Riemann hypothesis. Acta Math. 40, 185–190 (1916)

    Article  MATH  MathSciNet  Google Scholar 

  42. Robles, N., Roy, A.: Two parameter generalization of the Selberg formula and the Weil explicit formula, in preparation (2014)

  43. Rudnick, Z., Sarnack, P.: Zeros of principal \(L\)-functions and random matrix theory in a celebration of John F. Nash Jr. Duke Math. J. 81(2), 269–322 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  44. Selberg, A.: Old and new conjectures and results about a class of Dirichlet series. In: Bombieri, E., et al. (eds.) Proceedings of the Amalfi Conference on Analytic Number Theory, Universitá di Salerno, pp. 367–385 (1992); Collected Papers, vol. II, pp. 47–63. Springer Verlag, Berlin (1991)

  45. Soundararajan, K.: Extreme values of zeta and \(L\)-functions. Math. Ann. 342, 467–486 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  46. Titchmarsh, E.C.: Hankel transforms. Proc. Camb. Philos. Soc. 21, 463–473 (1922)

    Google Scholar 

  47. Titchmarsh, E.C.: Introduction to the Theory of Fourier Integrals, 2nd edn. Oxford University Press, Oxford (1948)

    Google Scholar 

  48. Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function (Revised by D.R. Heath-Brown). Oxford University Press, Oxford (1986)

    Google Scholar 

  49. Varma, R.S.: Some functions which are self-reciprocal in the Hankel-transform. Proc. Lond. Math. Soc. 2, 9–17 (1937)

    Article  MathSciNet  Google Scholar 

  50. Weil, A.: Sur les “formules explicites” de la théorie des nombres premiers. Commun. Sém. Math. Univ. Lund. Tome Supplementaire, 252–265 (1952)

Download references

Acknowledgments

The authors wish to acknowledge the helpful comments of the referee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Robles.

Additional information

The authors were partially supported by the SNF Grants PP00P2_138906 and 200020_149150\({\backslash }1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kühn, P., Robles, N. & Roy, A. On a class of functions that satisfies explicit formulae involving the Möbius function. Ramanujan J 38, 383–422 (2015). https://doi.org/10.1007/s11139-014-9608-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-014-9608-1

Keywords

Mathematics Subject Classification

Navigation