Skip to main content
Log in

Quantum phase transition in dimerised spin-1/2 chains

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum phase transition in dimerised antiferromagnetic Heisenberg spin chain has been studied. A staircase structure in the variation of concurrence within strongly coupled pairs with that of external magnetic field has been observed indicating multiple critical (or critical like) points. Emergence of entanglement due to external magnetic field or magnetic entanglement is observed for weakly coupled spin pairs too in the same dimer chain. Though closed dimerised isotropic XXX Heisenberg chains with different dimer strengths were mainly explored, analogous studies on open chains as well as closed anisotropic (XX interaction) chains with tilted external magnetic field have also been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Sachdev, S.: Quantum Phase Transitions. Cambridge UniversityPress, Cambridge (1999)

    Google Scholar 

  2. Arnesen, M.C., Bose, S., Vedral, V.: Natural thermal and magnetic entanglement in the 1D Heisenberg model. Phys. Rev. Lett. 87, 017901 (2001)

    Article  ADS  Google Scholar 

  3. Zhou, L., Song, H.S., Guo, Y.Q., Li, C.: Enhanced thermal entanglement in an anisotropic Heisenberg XYZ chain. Phy. Rev. A 68, 024301 (2003)

    Article  ADS  Google Scholar 

  4. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  7. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  8. Kane, B.E.: A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998)

    Article  ADS  Google Scholar 

  9. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)

    Article  ADS  Google Scholar 

  10. Burkard, G., Loss, D., DiVincenzo, D.P.: Coupled quantum dots as quantum gates. Phys. Rev. B 59, 2070–2078 (1999)

    Article  ADS  Google Scholar 

  11. Imamoglu, A., Awschalom, D.D., Burkard, G., DiVincenzo, D.P., Loss, D., Sherwin, M., Small, A.: Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999)

    Article  ADS  Google Scholar 

  12. Nielsen, M.: Quantum information theory. Ph.D. thesis, University of New Mexico (1998)

  13. Wang, X.: Entanglement in the quantum Heisenberg XY model. Phys. Rev. A 64, 012313 (2001)

    Article  ADS  Google Scholar 

  14. Kamta, G.L., Starace, A.F.: Anisotropy and magnetic field effects on the entanglement of a two qubit Heisenberg XY chain. Phys. Rev. Lett. 88, 107901 (2002)

    Article  ADS  Google Scholar 

  15. Sen, A., Sen, U., Lewenstein, M.: Dynamical phase transitions and temperature-induced quantum correlations in an infinite spin chain. Phys. Rev. A 72, 052319 (2005)

    Article  ADS  Google Scholar 

  16. Sun, Y., Chen, Y., Chen, H.: Thermal entanglement in the two-qubit Heisenberg XY model under a non uniform external magnetic field. Phys. Rev. A 68, 044301 (2003)

    Article  ADS  Google Scholar 

  17. Terzis, A.F., Paspalakis, E.: Entanglement in a two-qubit Ising model under a site-dependent external magnetic field. Phys. Lett. A 333, 438–445 (2004)

    Article  ADS  MATH  Google Scholar 

  18. Gong, S.S., Su, G.: Thermal entanglement in one-dimensional Heisenberg quantum spin chains under magnetic fields. Phys. Rev. A 80, 012323 (2009)

    Article  ADS  Google Scholar 

  19. Plekhanov, E., Avella, A., Mancini, F.: Thermal entanglement in one- dimensional Heisenberg quantum spin chains under magnetic fields. Phys. B 403, 1282–1283 (2008)

    Article  ADS  Google Scholar 

  20. Karthik, J., Sharma, A., Lakshminarayan, A.: Thermal entanglement in one-dimensional Heisenberg quantum spin chains under magnetic fields. Phys. Rev. A 75, 022304 (2007)

    Article  ADS  Google Scholar 

  21. Hao, X., Zhu, S.: Entanglement in a quantum mixed-spin chain. Phys. Lett. A 366, 206–210 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Prosen, T., Pizorn, I.: Operator space entanglement entropy in a transverse Ising chain. Phys. Rev. A 76, 032316 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  23. Bose, S.: Quantum communication through spin chain dynamics: an introductory overview. Contemp. Phys. 48, 13–30 (2007)

    Article  ADS  Google Scholar 

  24. Yang, S., Bayat, A., Bose, S.: Entanglement-enhanced information transfer through strongly correlated systems and its application to optical lattices. Phys. Rev. A 84, 020302(R) (2011)

    Article  ADS  Google Scholar 

  25. Rafiee, M., Mokhtari, H.: Long-distance entanglement generation by local rotational protocols in spin chains. Phys. Rev. 87, 022304 (2013)

    Article  ADS  Google Scholar 

  26. Kontorovich, V.M., Tsukernik, V.M.: Magnetic properties of a spin array with two sublattices. Sov. Phys. JETP 26, 687–691 (1968)

    ADS  Google Scholar 

  27. Perk, J., Capel, H., Zuilhof, M., Siskens, T.J.: Magnetic properties of a spin array with two sublattices. Phys. A 81A, 319–348 (1975)

    Article  ADS  Google Scholar 

  28. Diederix, K., Groen, J.P., Poulis, N.: A study of the high field phase transition in Cu(NO3)2.2(1/2)H2O. Physica 86–88B, 1151–1152 (1977)

    Google Scholar 

  29. Diederix, K.M., Groen, J.P., Henkens, L.S.J.M., Klaassen, T., Poulis, N.J.: An experimental study on the magnetic properties ground-state system in Cu(NO3)2.2-1/2H2O of the singlet. Physica 93B, 99–113 (1978)

    Google Scholar 

  30. Diederix, K.M., Groen, J.P., Henkens, L.S.J.M., Klaassen, T., Poulis, N.J.: An experimental study on the magnetic properties of the singlet ground-state system in CU(NO3)2.2-1/2H2O. Physica 94B, 9–26 (1978)

    Google Scholar 

  31. Diederix, K.M., Blote, H.W.J., Groen, J.P., Klaassen, T.O., Poulis, N.: An experimental study on the magnetic properties of the singlet ground-state system in CU(NO3)2.2-1/2H2O. Phys. Rev. B 19, 420–431 (1979)

    Article  ADS  Google Scholar 

  32. Bonner, J.C., Fisher, M.E.: Linear magnetic chains with anisotroyic coupling. Phys. Rev. 135(3A), A640–A658 (1964)

    Article  ADS  Google Scholar 

  33. Hida, K.: Crossover between the Haldane-gap phase and the dimer phase in the spin-1/2 alternating Heisenberg chain. Phys. Rev. B 45, 2207–2212 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  34. Feldman, E.B., Rudavets, M.G.: Crossover between the Haldane-gap phase and the dimer phase in the spin-1/2 alternating Heisenberg chain. JETP Lett. 81, 47–52 (2005)

    Article  ADS  Google Scholar 

  35. Kuznetsova, E.I., Feldman, B.: Crossover between the Haldane-gap phase and the dimer phase in the spin-1/2 alternating Heisenberg chain. J. Exp. Theor. Phys. 102, 882–893 (2006)

    Article  ADS  Google Scholar 

  36. Chitra, R., Pati, S., Krishnamurthy, H.R., Sen, D., Ramasesha, S.: Crossover between the Haldane-gap phase and the dimer phase in the spin-1/2 alternating Heisenberg chain. Phy. Rev. B 52, 6581–6587 (1995)

    Article  ADS  Google Scholar 

  37. Fledderjohann, A., Gros, C.: Spin dynamics of dimerized Heisenberg chains. Europhys. Lett. 37, 189–194 (1997)

    Article  ADS  Google Scholar 

  38. Doronin, S.I., Pyrkov, A.N., Feldman, B.: Entanglement in alternating open chains of nuclear spins s = 1/2 with the XY Hamiltonian. JETP Lett. 85, 519–523 (2007)

    Article  Google Scholar 

  39. Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Harcourt Asia Pvt. Ltd., Singapore (2001)

    Google Scholar 

  40. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  41. Cheng, W., Shan, C., Sheng, Y., Gong, L., Zhao, S.: Quantum correlation approach to criticality in the XX spin chain with multiple interaction. Phys. B 407, 3671–3675 (2012)

    Article  ADS  Google Scholar 

  42. Cheng, W.W., Du, Z.Z., Gong, L.Y., Zhao, S.M., Liu, J.M.: Signature of topological quantum phase transitions via Wigner-Yanase skew information. EPL 108, 46003 (2014)

    Article  ADS  Google Scholar 

  43. Cheng, W.W., Li, J.X., Shan, C.J., Gong, L.Y., Zhao, S.M.: Criticality, factorization and Wigner-Yanase skew information in quantum spin chains. Quantum Inf. Process. 14, 2535–2549 (2015)

    Article  ADS  Google Scholar 

  44. Shan, C.J., Cheng, W.W., Liu, J.B., Cheng, Y.S.: Scaling of geometric quantum discord close to a topological phase transition. Sci. Rep. 4, 4473 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

AD and SB acknowledge the support offered by Acharya Prafulla Chandra College and Sarojini Naidu College for Women for carrying out this work, part of which was done as part of their project work at Master’s level under supervision of SS. The authors acknowledge some helpful discussions with Jacques H.H. Perk regarding the earlier studies on phase transitions in alternating chains and finite size effects of the spin chains, during the preparation of the final version of this manuscript, in which authors were made aware of some old references too. The authors also like to acknowledge Edward Fel’dman for drawing their attention to some recent works. The anonymous reviewers are also being acknowledged for their useful suggestions and for pointing out some useful references. The work of SS was supported by the UGC MRP Grant (Sanction No. F. PSW-164/13-14). SS further acknowledges the technical supports she got from Dr. Sankhasubhra Nag, SNCW, Kolkata.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonali Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Bhadra, S. & Saha, S. Quantum phase transition in dimerised spin-1/2 chains. Quantum Inf Process 14, 4089–4102 (2015). https://doi.org/10.1007/s11128-015-1116-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1116-8

Keywords

Navigation